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Abstract We discuss local convergence of Newton’s method to a singular
solution x∗ of the nonlinear equations F (x) = 0, for F : IR

n → IR
n. It is shown

that an existing proof of Griewank, concerning linear convergence to a sin-
gular solution x∗ from a starlike domain around x∗ for F twice Lipschitz
continuously differentiable and x∗ satisfying a particular regularity condi-
tion, can be adapted to the case in which F ′ is only strongly semismooth at
the solution. Further, Newton’s method can be accelerated to produce fast
linear convergence to a singular solution by overrelaxing every second New-
ton step. These results are applied to a nonlinear-equations reformulation of
the nonlinear complementarity problem (NCP) whose derivative is strongly
semismooth when the function f arising in the NCP is sufficiently smooth.
Conditions on f are derived that ensure that the appropriate regularity con-
ditions are satisfied for the nonlinear-equations reformulation of the NCP at
x∗.
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1 Introduction

Consider a mapping F : IR
n → IR

n, and let x∗ ∈ IR
n be a solution to F (x) = 0.

We consider the local convergence of Newton’s method when the solution x∗

is singular (that is, kerF ′(x∗) 6= {0}) and when F is once but possibly
not twice differentiable. We also consider an accelerated variant of Newton’s
method that achieves a fast linear convergence rate under these conditions.
Our technique can be applied to a nonlinear-equations reformulation of non-
linear complementarity problems (NCP) defined by

0 ≤ f(x), x ≥ 0, xT f(x) = 0, NCP(f)(1)

where f : IR
n → IR

n. At degenerate solutions of the NCP (solutions x∗ at
which x∗i = fi(x

∗) = 0 for some i = 1, 2, . . . , n), the nonlinear-equations
reformulation considered in this paper is not twice differentiable at x∗, and
weaker smoothness assumptions are required. Our results show that (i) New-
ton’s method applied to the nonlinear-equations reformulation of the NCP
converges linearly inside a “starlike domain” centered at a singular solution
x∗; (ii) a simple technique can be applied to achieve a faster linear rate. The
simplicity of our approach contrasts with other nonlinear-equations-based
approaches to solving (1), which are either nonsmooth (and hence require
nonsmooth Newton techniques whose implementations are more complex;
see for example Josephy [14] and Facchinei and Pang [6, p. 663-674]) or else
require classification of the indices i = 1, 2, . . . , n into those for which x∗i = 0,
those for which fi(x

∗) = 0, or both.
Around 1980, several authors, including Reddien [20], Decker and Kel-

ley [3], and Griewank [8], proved linear convergence for Newton’s method to
a singular solution x∗ of F from special regions near x∗, provided that F is
twice Lipschitz continuously differentiable and a certain 2-regularity condi-
tion holds at x∗. (The “2” emphasizes the role of the second derivative of
F in this regularity condition.) In the first part of this work, we show that
Griewank’s analysis, which gives linear convergence from a starlike domain
of x∗ (defined below), can be extended to the case in which F ′ is strongly
semismooth at x∗; see Section 4. In Section 5, we consider a standard ac-
celeration scheme for Newton’s method, which “overrelaxes” every second
Newton step. By assuming that F ′ is at least strongly semismooth at x∗

and that a 2-regularity condition holds, we show that this technique yields
arbitrarily fast linear convergence from a partial neighborhood of x∗.

In the second part of this work, beginning in Section 6, we consider a
nonlinear-equations reformulation of the NCP and interpret the regularity
conditions for this reformulation as conditions on the NCP. We show that
they reduce to previously known NCP regularity conditions in certain cases.
We conclude in Section 7 by presenting computational results for some simple
NCPs, including a number of degenerate examples.
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We start with definitions and terminology (Section 2) and a discussion of
prior relevant work (Section 3).

2 Definitions and Properties

For G : Ω ⊆ IR
n → IR

p, we follow convention in writing the derivative G′ as
a map from Ω → IR

p×n when p > 1 and a map from Ω to IR
n (equivalently

IR
n×1) when p = 1. The Euclidean norm is denoted by ‖ · ‖, and the unit

sphere is S = {t | ‖t‖ = 1}.
For any subspace X of IR

n, dimX denotes the dimension of X . The kernel
of a linear operator M is denoted kerM , the image or range of the operator
is denoted rangeM . rankM denotes the rank of the matrix M , which is the
dimension of rangeM .

A starlike domain with respect to x∗ ∈ IR
n is an open set A with the

property that x ∈ A ⇒ λx+ (1 − λ)x∗ ∈ A for all λ ∈ (0, 1). A vector t ∈ S
is an excluded direction for A if x∗ + λt /∈ A for all λ > 0.

We now list various definitions relating to the smoothness of a function.

Definition 1 Directionally differentiable. Let G : Ω ⊆ IR
n → IR

p, with
Ω open, x ∈ Ω, and d ∈ IR

n. If the limit

(2) lim
t↓0

G(x + td) −G(x)

t

exists in IR
p, G has a directional derivative at x along d and we denote this

limit by G′(x; d). G is directionally differentiable at x if G′(x; d) exists for
every d in a neighborhood of the origin.

Definition 2 B-differentiable. ([6, Definition 3.1.2]) G : Ω ⊆ IR
n → IR

p,
with Ω open, is B(ouligand)-differentiable at x ∈ Ω if G is Lipschitz contin-
uous in a neighborhood of x and directionally differentiable at x.

Definition 3 Strongly semismooth. ([6, Definition 7.4.2]) Let G : Ω ⊆
IR

n → IR
p, with Ω open, be locally Lipschitz continuous on Ω. G is strongly

semismooth at x̄ ∈ Ω if G is directionally differentiable near x̄ and

lim supx̄6=x→x̄

‖G′(x;x− x̄) −G′(x̄;x− x̄)‖

‖x− x̄‖2
<∞.

Further, G is strongly semismooth on Ω if G is strongly semismooth at every
x̄ ∈ Ω.

IfG is (strongly) semismooth at x̄, then it is B-differentiable at x̄. Further,
if G is B-differentiable at x̄, then G′(x̄; ·) is Lipschitz continuous [19]. Hence,
for F ′ : IR

n → IR
n×n strongly semismooth at x∗, there is some Lx∗ such that

(3) ‖(F ′)′(x∗;h1) − (F ′)′(x∗;h2)‖ ≤ Lx∗‖h1 − h2‖.

If F ′ is strongly semismooth at x∗ and ‖x− x∗‖ is sufficiently small, we
have the following crucial estimate from equation (7.4.5) of [6]:

(4) F ′(x) = F ′(x∗) + (F ′)′(x∗;x− x∗) +O(‖x− x∗‖2).
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(We use p = n2 in order to apply Definition 3 to F ′.)
Lastly, we define 2-regularity and its variants. For F : IR

n → IR
n, suppose

x∗ is a singular solution of F (x) = 0 and F ′ is strongly semismooth at x∗.
We define N := kerF ′(x∗). Let N⊥ denote the orthogonal complement of
N, such that N ⊕ N⊥ = IR

n, and let N∗ := kerF ′(x∗)T with orthogonal
complement N∗⊥. We denote by PN , PN⊥

, PN∗
, and PN∗⊥

the orthogonal
projections onto N , N⊥, N∗, and N∗⊥ respectively, while (·)|N denotes the
restriction map to N . Let m := dimN > 0.

We say that F satisfies 2-regularity for some d ∈ IR
n at a solution x∗ if

(5) (PN∗
F ′)′(x∗; d)|N is nonsingular.

The 2-regularity conditions of Reddien [20], Decker and Kelley [3], and Griewank [8]
require (5) to hold for certain d ∈ N . In fact, this property first appeared
in the literature as nonsingularity of (PN∗

F ′′(x∗)d)|N ; the form in (5) was
introduced by Izmailov and Solodov [11]. By applying PN∗

to F ′ before tak-
ing the directional derivative, the theory of 2-regularity may be applied to
problems for which PN∗

F ′ is directionally differentiable but F ′ is not (see
[13]).

Decker and Kelley [3] and Reddien [20] use the following definition of
2-regularity, which we call 2∀-regularity.

Definition 4 2∀-regularity. 2∀-regularity holds for F at x∗ if (5) holds for
every d ∈ N \ {0}.

For F twice differentiable at x∗, 2∀-regularity implies (geometric) isolation
of the solution x∗ [20,3] and limits the dimension of N to at most 2 [4].

Next, we define a weaker 2-regularity that can hold regardless of the
dimension of N or whether x∗ is isolated.

Definition 5 2ae-regularity. 2ae-regularity holds for F at x∗ if (5) holds
for almost every d ∈ N .

Weaker still is the condition we call 21-regularity.

Definition 6 21-regularity. 21-regularity holds for F at x∗ if (5) holds for
some d ∈ N .

For the case in which F is twice Lipschitz continuously differentiable, Griewank
shows that 21-regularity and 2ae-regularity are actually equivalent [8, p. 110].
This property fails to hold under the weaker smoothness conditions of this
work. For example, the smooth nonlinear equations reformulation (7) of the
nonlinear complementarity problems quad2 and affknot1 (defined in Ap-
pendix A) are 21-regular but not 2ae-regular at their solutions.

Izmailov and Solodov introduce a regularity condition and prove that it
implies isolation of the solution, provided that PN∗

F ′(x∗) is B-differentiable [11,
Theorem 5(a)]. The following form of this condition, which we call 2T -
regularity, is specific to our case F : IR

n → IR
n and is due to Daryina, Iz-

mailov, and Solodov [1, Def. 2.1]. Consider the set

(6) T2 := {d ∈ N | (PN∗
F ′)′(x∗; d)d = 0}.
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Definition 7 2T-regularity [1, Def. 2.1]. 2T -regularity holds for F at x∗

if T2 = {0}.

As can be seen from Table 1 in Section 7, neither 2T -regularity nor 2ae-
regularity implies the other condition. By definition, 2∀-regularity implies the
other three regularity conditions. Therefore, since 2T -regularity implies isola-
tion of the solution under our smoothness conditions, so must 2∀-regularity.
If dim N = 1, then 2T -regularity is equivalent to 2∀-regularity (which is
trivially equivalent to 2ae-regularity in this case).

3 Prior Work

In this section, we summarize prior work relevant to this paper.

2-regularity Conditions. 2-regularity has been applied to a variety of uses
including error bounds, implicit function theorems, and optimality condi-
tions [11,13]. We focus here on the use of 2-regularity conditions to prove
convergence of Newton-like methods to singular solutions.

The 21-regularity condition (Definition 6) was used by Reddien [21] and
Griewank and Osborne [10]. The proofs therein show convergence of New-
ton’s method (at a linear rate of 1/2) only for starting points x0 such that
x0−x∗ lies approximately along the particular direction d for which the non-
singularity condition (5) holds. The more stringent 2∀-regularity condition
(Definition 4) was used by Decker and Kelley [3] to prove linear convergence of
Newton’s method from starting points in a particular truncated cone around
N . The convergence analysis given for 2∀-regularity [20,3,2] is much simpler
than the analysis presented by Griewank [8], and in the current paper.

Griewank [8] proves convergence of Newton’s method from all starting
points in a starlike domain with respect to x∗. If 21-regularity holds at x∗

and F is twice Lipschitz continuously differentiable at x∗, then the starlike
domain is “dense” near x∗ in the sense that the set of excluded directions has
measure zero—a much more general set than the cones around N analyzed
prior to that time.

Acceleration Techniques. When iterates {xk} generated by a Newton-like
method converge to a singular solution, the error xk − x∗ lies predominantly
in the null space N of F ′(x∗). Acceleration schemes typically attempt to stay
within a cone around N while lengthening (“overrelaxing”) some or all of the
Newton steps.

We discuss several of the techniques proposed in the early 1980s. All re-
quire starting points whose error lies in a cone aroundN , and all assume three
times differentiability of F . Decker and Kelley [4] prove superlinear conver-
gence for a scheme in which every second Newton step is essentially doubled
in length along the subspace N . Their technique requires 2∀-regularity at x∗,
an estimate of N , and a nonsingularity condition over N on the third deriva-
tive of F at x∗. Decker, Keller, and Kelley [2] prove superlinear convergence
when every third step is overrelaxed, provided that 21-regularity holds at x∗

and the third derivative of F at x∗ satisfies a nonsingularity condition on N .
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Kelley and Suresh [16] require 21-regularity at x∗ and the third derivative of
F at x∗ bounded over the truncated cone about N . Overrelaxing every other
step by a factor approaching 2 results in superlinear convergence.

By contrast, the acceleration technique given in Section 5 of our paper
does not require the starting point x0 to be in a cone about N , and re-
quires only strong semismoothness of F ′ at x∗. On the other hand, we obtain
only fast linear convergence. We believe, however, that our analysis can be
extended to a superlinear scheme like that of Kelley and Suresh [16].

Smooth Nonlinear-Equations Reformulation of the NCP. In the latter part
of this paper, we discuss a nonlinear-equations reformulation of the NCP
Ψ based on the function ψs(a, b) := 2ab − (min(0, a + b))2, which has the
property that ψs(a, b) = 0 if and only if a ≥ 0, b ≥ 0, and ab = 0. The
function Ψ : IR

n → IR
n is defined by

(7) Ψi(x) := 2xifi(x) − [min(0, xi + fi(x))]
2, i = 1, 2, . . . , n.

This reformulation is apparently due to Evtushenko and Purtov [5] and was
studied further by Kanzow [15]. The first derivative Ψ ′ is strongly semismooth
at a solution x∗ if f ′ is strongly semismooth at x∗. If x∗i = fi(x

∗) = 0 for
some i, x∗ is a singular root of Ψ , which fails to be twice differentiable.

Recently, Izmailov and Solodov [11–13] and Daryina, Izmailov, and Solodov [1]
have investigated the properties of the mapping Ψ and designed algorithms
around it. (Some of their investigations, like ours, have taken place in the
more general setting of a mapping F for which F ′ has semismoothness prop-
erties.) Izmailov and Solodov [11,13] show that an error bound for NCPs
holds whenever 2T -regularity holds. Using this error bound to classify the in-
dices i = 1, 2, . . . , n, Daryina, Izmailov, and Solodov [1] present an active-set
Gauss-Newton-type method for NCPs. They prove superlinear convergence
to singular points which satisfy 2T -regularity as well as another condition
known as weak regularity, which requires full rank of a certain submatrix of
f ′(x∗). In [12], Izmailov and Solodov augment the reformulation Ψ(x) = 0
by adding a nonsmooth function containing second-order information. They
apply the generalized Newton’s method to the resulting function and prove
superlinear convergence under 2T -regularity and another condition called
quasi-regularity, discussed further in Subsection 6.3 below.

In contrast to the algorithms of [1] and [12], our approach has fast linear
convergence rather than superlinear convergence. Our regularity conditions
are comparable and may be weaker in some cases. (For example, the problem
munson4 in Appendix A satisfies both 2T -regularity and 2ae-regularity but
not weak regularity.) We believe that our algorithm has the advantage of
simplicity. Near the solution, it modifies Newton’s method only by incorpo-
rating a simple check to detect linear convergence and possibly overrelaxing
every second step. There is no need to classify the constraints, add “border-
ing” terms, or switch to a different step computation strategy in the final
iterations.
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4 Convergence of the Newton Step to a Singularity

Griewank [8] extended the work of others [20,3] to prove local convergence
of Newton’s method from a starlike domain R of a singular solution x∗ of
F (x) = 0. Specialized to the case of k = 1 (Griewank’s notation), he assumes
that F ′′(x) is Lipschitz continuous near x∗ and x∗ is a 21-regular solution.
Griewank’s convergence analysis shows that the first Newton step takes the
initial point x0 from the original starlike domain R into a simpler starlike
domain Ws, a wedge around a vector s in the null space N . The domain Ws

is similar to the domains of convergence found in earlier works (Reddien [20],
Decker and Kelley [3]). Linear convergence is then proved inside Ws. For F
twice continuously differentiable, the convergence domain R is much larger
than Ws. In fact, the set of directions excluded from R has zero measure.

We weaken the smoothness assumption of Griewank in replacing the sec-
ond derivative of F in (5) by a directional derivative of F ′. Our assumptions
follow:

Assumption 1 For F : IR
n → IR

n, x∗ is a singular, 21-regular solution of
F (x) = 0 and F ′ is strongly semismooth at x∗.

We show that Griewank’s convergence results hold under this assumption.

Theorem 1 Suppose Assumption 1 holds. There exists a starlike domain R
about x∗ such that, if Newton’s method for F (x) is initialized at any x0 ∈ R,
the iterates converge linearly to x∗ with rate 1/2. If the problem is converted
to standard form (8) and x0 = ρ0t0, where ρ0 = ‖x0‖ > 0 and t0 ∈ S, then
the iterates converge inside a cone with axis g(t0)/‖g(t0)‖, for g defined in
(30).

Only a few modifications to Griewank’s proof [8] are necessary. We use
the properties (3) and (4) to show that F is smooth enough for the steps
in the proof to hold. Finally, we make an insignificant change to a constant
required by the proof due to a loss of symmetry in R. (Symmetry is lost in
moving from derivatives to directional derivatives because directional deriva-
tives are positively but not negatively homogeneous.) The proof in [8] also
considers regularities larger than 2, for which higher derivatives are required.
We restrict our discussion to 2-regularity because we are interested in the
application to a nonlinear-equations reformulation of NCP, for which such
higher derivatives are unavailable.

In the remainder of this section, we develop some preliminaries, discuss
domains of invertibility of the Jacobian and convergence of the Newton it-
erates, analyze the form of a Newton step, and finally sketch the proof of
Theorem 1. The proof is presented in full in the extended technical report
[18], where its points of departure from Griewank’s proof are highlighted.

4.1 Preliminaries

For simplicity of notation, we start by standardizing the problem. The New-
ton iteration is invariant with respect to nonsingular linear transformations
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of F and nonsingular affine transformations of the variables x. As a result,
we can assume that

(8) x∗ = 0, F ′(x∗) = F ′(0) = (I − PN∗
), and N∗ = IR

m × {0}n−m.

(We revoke assumption (8) in our discussion of an equation reformulation of
the NCP in Sections 6 and 7.)

For x ∈ IR
n \ {0}, we write x = x∗ + ρt = ρt, where ρ = ‖x‖ is the 2-norm

distance to the solution and t = x/ρ is a direction in the unit sphere S. From
the third assumption in (8), we have

PN∗
=

[

Im×m 0m×n−m

0n−m×m 0n−m×n−m

]

,

where I represents the identity matrix and 0 the zero matrix, with subscripts
indicating their dimensions. By substituting in the second assumption of (8),
we obtain

(9) F ′(0) =

[

0m×m 0m×n−m

0n−m×m In−m×n−m

]

.

Since F ′(0) is symmetric, the null space N is identical to N∗.
Using (8), we partition F ′(x) as follows:

F ′(x) =

[

PN∗
F ′(x)|N PN∗

F ′(x)|N⊥

PN∗⊥
F ′(x)|N PN∗⊥

F ′(x)|N⊥

]

=:

[

B(x) C(x)
D(x) E(x)

]

.

In conformity with the partitioning in (9), the submatrices B,C,D, and E
have dimensions m×m,m×n−m,n−m×m, and n−m×n−m, respectively.
Using x∗ = 0, we define

B̄(x) = B̄(x− x∗) = (PN∗
F ′)′(x∗;x− x∗)|N = (PN∗

F ′)′(0;x)|N ,(10a)

C̄(x) = C̄(x− x∗) = (PN∗
F ′)′(x∗;x− x∗)|N⊥

= (PN∗
F ′)′(0;x)|N⊥

.(10b)

From x = ρt, the expansion (4) with x∗ = 0 yields

B(x) = B̄(x) +O(ρ2) = ρB̄(t) +O(ρ2),

C(x) = C̄(x) +O(ρ2) = ρC̄(t) +O(ρ2),(11)

D(x) = O(ρ), and E(x) = I +O(ρ).

The constants that bound the O(·) terms in these expressions can be chosen
independently of t, by compactness of S. This is the first difference between
our analysis and Griewank’s analysis: We use (4) to arrive at (11), while he
uses Taylor’s theorem.

For some rb > 0, E is invertible for all ρ < rb and all t ∈ S, with
E−1(x) = I +O(ρ). Invertibility of F ′(x) is equivalent to invertibility of the
Schur complement of E(x) in F ′(x), which we denote by G(x) and define by

G(x) := B(x) − C(x)E(x)−1D(x).
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This claim follows from the determinant formula det(F ′(x)) = det(G(x))det(E(x)).
By reducing rb if necessary to apply (11), we have

(12) G(x) = B(x) +O(ρ2) = ρB̄(t) +O(ρ2).

Hence,
det(F ′(x)) = ρmdetB̄(t) +O(ρm+1).

As in the proof of [8, Lemma 3.1 (iii)], we note that all but the smallest m
singular values of F ′(x) are close to 1 in a neighborhood of x∗. Letting ν(s)
denote the smallest singular value of F ′(s), we have that

(13) ν(ρt) = O((detF ′(ρt))1/m) =

{

O(ρ), if B̄(t) is nonsingular,

o(ρ), if B̄(t) is singular.

For later use, we define γ to be the smallest positive constant such that

‖G(x) − ρB̄(t)‖ ≤ γρ2, for all x = ρt, all t ∈ S, and all ρ < rb.

Following Griewank [8], we define the function σ(t) to be the minimum
of 1 and the smallest (in magnitude) singular value of B̄(t), that is,

(14) σ(t) :=

{

0 if B̄(t) is singular
min(1, ‖B̄−1(t)‖−1) otherwise.

The individual singular values of a matrix vary continuously with respect
to perturbations of the matrix [7, Theorem 8.6.4]. By (3), B̄(t) is Lipschitz
continuous in t, so that σ(t) is continuous in t. This is the second difference
between our analysis and Griewank’s analysis: We require (3) to prove conti-
nuity of the singular values of B̄(t), while he uses the fact that B̄(t) is linear
in t, which holds under his smoothness assumptions.

Let

(15) Π0(d) := detB̄(d), for d ∈ IR
n.

In contrast to the smooth case considered by Griewank, Π0(d) is not a ho-
mogeneous polynomial in d, but rather a positively homogeneous, piecewise-
smooth function. Hence, 21-regularity does not imply 2ae-regularity. Since the
determinant is the product of singular values, we can use the same reasoning
as for σ(t) to deduce that Π0(t) is continuous in t for t ∈ S.

4.2 Domains of Invertibility and Convergence

In this section we define the domains Ws and R. These definitions depend on
several functions that we now introduce. If we define min(∅) = π, the angle

(16) φ(s) :=
1

4
min{cos−1(tT s) | t ∈ S ∩Π0

−1(0)}, for s ∈ N ∩ S

is a well defined, nonnegative continuous function, bounded above by π
4 . For

the smooth case considered by Griewank, if t ∈ Π0
−1(0), then −t ∈ Π0

−1(0)
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and the maximum angle if Π0
−1(0) 6= ∅ is π

2 . This is no longer true in
our case; the corresponding maximum angle is π. Hence, we have defined
min(∅) = π (instead of Griewank’s definition min(∅) = π

2 ) and the coefficient

of φ(s) is 1
4 instead of 1

2 . (This is the third and final difference between our

analysis and Griewank’s.) Now, φ−1(0) = N ∩ S ∩Π0
−1(0) because the set

{s ∈ S |Π0(s) 6= 0} is open in S since Π0(·) is continuous on S, by (3).
In [8, Lemma 3.1], Griewank defines the auxiliary starlike domain of in-

vertibility R̄,

(17) R̄ := {x = ρt | t ∈ S, 0 < ρ < r̄(t)},

where

(18) r̄(t) := min

{

rb,
1

2
γ−1σ(t)

}

.

The excluded directions of R̄, t ∈ S for which σ(t) = 0, are the directions
along which the smallest singular value of the determinant of F ′(ρt) is o(ρ),
by (13) and (14). This set of directions may have measure that is positive
but less than one in S. This is the case for the smooth nonlinear equations
reformulation (7) of the nonlinear complementarity problem quad2 (defined
in Appendix A). For this problem, σ(t) 6= 0 for almost every t = (t1, t2)T ∈ S
with t1 < 0 and t2 6= 0, while σ(t) = 0 for any t ∈ S with t1 > 0.

As in [8, Lemma 5.1], we define

r̂(s) := min{r̄(t) | t ∈ S, cos−1(tT s) ≤ φ(s)}, for s ∈ N ∩ S,(19)

σ̂(s) := min{σ(t) | t ∈ S, cos−1(tT s) ≤ φ(s)}, for s ∈ N ∩ S.(20)

These minima exist and both are nonnegative and continuous on S ∩N with
σ̂−1(0) = r̂−1(0) = φ−1(0). Since σ(t) ≤ 1 by definition, we have σ̂(s) ≤ 1
for s ∈ N ∩ S.

Let c be the positive constant defined by

(21) c := max{‖C̄(t)‖ + σ(t) | t ∈ S}.

In the following, we use the abbreviation

(22) q(s) :=
1

4
sinφ(s) ≤

1

4
, for s ∈ N ∩ S.

We define the angle φ̂(s), for which 0 ≤ φ̂(s) ≤ π/2, by the equality

(23) sin φ̂(s) := min

{

q(s)

c/σ̂(s) + 1 − q(s)
,

2δr̂(s)

(1 − q(s))σ̂2(s)

}

, for s ∈ N ∩ S,

where δ is a problem-dependent, positive number specified in (39). We define

(24) ρ̂(s) :=
(1 − q(s))σ̂2(s)

2δ
sin φ̂(s), for s ∈ N ∩ S.

Both φ̂ and ρ̂ are nonnegative and continuous on N ∩ S with

(25) φ̂−1(0) = ρ̂−1(0) = φ−1(0) = Π−1
0 (0) ∩N ∩ S.
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Now we can define the starlike domains Ws and Is as follows:

Ws := {x = ρt | t ∈ S, cos−1(tT s) < φ̂(s), 0 < ρ < ρ̂(s)},(26)

Is := {x = ρt | t ∈ S, cos−1(tT s) < φ(s), 0 < ρ < ρ̂(s)}.(27)

By the first inequality in (23), sin φ̂(s) ≤ sinφ(s). Since both φ̂(s) and

φ(s) are acute angles, we have φ̂(s) ≤ φ(s) and thus Ws ⊆ Is. For s ∈ S ∩N,
Ws = ∅ if and only if Π0(s) = 0. The second implicit inequality in the

definition of sin φ̂(s), ensures that ρ̂(s) satisfies

(28) ρ̂(s) ≤ r̂(s) ≤ r̄(t) ≤ rb, for all t ∈ S with cos−1 tT s ≤ φ(s).

It follows that

(29) Is ⊂ R̄, for all s ∈ S ∩N \Π−1
0 (0).

(The justification given in [8] that r̂(s) ≤ r̄(s) is insufficient.)
Consider the positively homogeneous vector function g : (IRn \Π−1

0 (0)) →
N ⊆ IR

n,

(30) g(x) = ρg(t) =

[

I B̄−1(t)C̄(t)
0 0

]

x.

It is shown in (40) that the Newton iteration from a point x near x∗ = 0 is,
to first order, the map 1

2g(x), provided g(x) is defined at x.
The starlike domain of convergence R, which lies inside the domain of

invertibility R̄, is defined as follows (where x = ρt as usual):

(31) R := {x = ρt | t ∈ S, 0 < ρ < r(t)},

where

(32) r(t) := min

{

r̄(t),
σ2(t)ρ̂(s(t))

2δrb + cσ(t) + σ2(t)
,
‖g(t)‖σ2(t) sin φ̂(s(t))

2δ

}

,

where we define

s(t) :=
g(t)

‖g(t)‖
∈ N ∩ S,

and δ is the constant defined below in (39). (The coefficient 2, or k + 1 for
the general case, in front of δrb in the denominator of the second term of r(t)
is missing in [8] but is necessary for the proof of convergence.)

We conclude this subsection by characterizing the excluded directions of
R, that is, t ∈ S for which r(t) = 0. By the definition of r(t) (32), these are

directions for which at least one of r̄(t), σ(t), ‖g(t)‖, ρ̂(s(t)), or sin φ̂(s(t)) is
zero. By definition, r̄(t) (18) is zero if and only if σ(t) is zero. If σ(t) is nonzero,
that is, t /∈ Π−1

0 (0) then g(t) is well defined. If additionally ‖g(t)‖ 6= 0, then

s(t) is well defined. Since s(t) ∈ N ∩ S, by (25) ρ̂(s(t)) or sin φ̂(s(t)) is zero
if and only if s(t) ∈ Π−1

0 (0). To summarize, r(t) is zero for t ∈ S if and only
if one of the following conditions is true:

(33) t ∈ Π−1
0 (0), g(t) = 0, or g(t)/‖g(t)‖ ∈ Π−1

0 (0).
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By the definition of Π0 (see (15) and (10a)), the first condition fails if F
satisfies 2-regularity (5) for t, and the third condition fails if F satisfies 2-
regularity (5) for g(t)/‖g(t)‖. For the second condition, by the definition of
g (30), we have for d ∈ IR

n \Π−1
0 (0) that

g(d) = 0 ⇔ B̄(d)dN + C̄(d)dN⊥
= 0,

where dN is the orthogonal projection of d onto N and dN⊥
is the orthogonal

projection of d onto N⊥. By the definitions (10a) and (10b), we have

(34) g(d) = 0 ⇔ (PN∗
F ′)′(x∗; d)d = 0, for d ∈ IR

n \Π−1
0 (0).

The right-hand side of this condition is identical to the condition defining the
set T2 (6), though the domain of d differs. Due to the limited smoothness of
F , it is possible for either Π0, g, or Π0(g(·)) to map a set of positive measure
in IR

n to 0. Hence, the set of excluded directions can have positive measure.

4.3 The Form of a Newton Step from x ∈ R̄

The content of this subsection is taken directly from Griewank [8] (with k
set to 1); we include it here for readability of this section and for further
reference in Section 5.

We consider the form of the Newton step from a point x = ρt in the
domain of invertibility R̄ defined in (17) to the point x̄, where

(35) x̄ := x− F ′(x)−1F (x).

For x ∈ R̄, we have σ(t) > 0. In the remainder of this discussion, we drop
the argument t from σ(t) and the argument x from various matrix quantities
such as G(x), C(x), etc. Using positivity of σ and (11), it can be checked
that the following expressions from [8] are also true here. We have

F ′(x)−1 =

[

G−1 −G−1CE−1

−E−1DG−1 E−1 + E−1DG−1CE−1

]

,

(see [8, (12)]), where

(36) G−1(x) = ρ−1B̄−1(t) + σ−2O(ρ0) = σ−2O(ρ−1),

(see [8, (13)]). As in the proof of [8, Lemma 4.1] with k = 1, we have

F (x) =

[

1
2G+O(ρ2) 1

2C +O(ρ2)
1
2D +O(ρ2) E +O(ρ)

]

x.

Using (11) to aggregate the order terms, as in [8], we have

F ′(x)−1F (x) =

[

1
2I + ‖G−1‖O(ρ2) − 1

2G
−1C + ‖G−1‖O(ρ2)

O(ρ) + ‖G−1‖O(ρ3) I +O(ρ) + ‖G−1‖O(ρ2)

]

x.

Due to (11), (36), and the positivity of σ, we have

G−1(x)C(x) = B̄−1(t)C̄(t) + σ−2O(ρ).



Newton’s Method for Nonlinear Equations with Semismooth Jacobian 13

Hence,

F ′(x)−1F (x) =(37)
[

1
2I + ‖G−1‖O(ρ2) − 1

2 B̄
−1(t)C̄(t) + σ−2O(ρ) + ‖G−1‖O(ρ2)

O(ρ) + ‖G−1‖O(ρ3), I +O(ρ) + ‖G−1‖O(ρ2)

]

x.

Since ‖G−1‖ = σ−2O(ρ−1), we can write

(38) F ′(x)−1F (x) =

[

1
2I − 1

2 B̄
−1(t)C̄(t)

0 I

]

x− e(x),

where the remainder vector e(x) can be bounded as follows:

(39) ‖e(x)‖ ≤ δ
ρ2

σ2
,

where the constant δ is positive and finite; in fact, it is a product of finite
powers of the constants in the O(·) terms in (11) which, as we have already
noted, are finite. The definition of r(t) (32) uses this value of δ.

Using (38), we have

(40) x̄ = x− F ′(x)−1F (x) =

[

1
2I

1
2 B̄

−1(t)C̄(t)
0 0

]

x+ e(x) =
1

2
g(x) + e(x),

where g(x) is defined in (30). In other words, if xk = ρktk for tk ∈ S is
sufficiently close to x∗ and σ(tk) is bounded below by a positive number,
then the Newton iterate xk+1 satisfies

xk+1 =
1

2
g(xk) +O(‖xk‖

2).

The proof provides a single positive lower bound for σ(tk) for all subsequent
Newton iterates {xk}. Hence, 1

2g(xk) is a first order approximation to the
Newton step from xk.

4.4 Outline of the Proof of Theorem 1

Consider the Newton iterates {xj = ρjtj}j≥0 with tj ∈ S. For s ∈ S, let
ψj(s) denote the angle between tj and s, that is,

(41) ψj(s) = cos−1 tTj s.

Let sj = g(xj)/‖g(xj)‖. The first phase of the proof is to show from (40) and
the definition of R that if x0 = ρ0t0 ∈ R, then

ψ1(s0) < φ̂(s0) and ρ1 < ρ̂(s0),

so that x1 ∈ Ws0
.

The second phase of the proof analyzes convergence from inside the do-
main Ws0

. Letting θj denote the angle between xj and the null space N , it
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is shown that the sequence of Newton iterates {xj = ρjtj}j≥1 starting from
any point x1 ∈ Ws0

maintains the properties

(42) ρj < ρ̂(s0), θj < φ̂(s0), ψj(s0) < φ(s0).

By the first and third properties, the iterates remain in Is0
(27). Further,

because of (20), the third property implies that

(43) σ(tj) ≥ σ̂(s0) > 0,

a fact that is used often in the proof. Finally, it can be shown that ρj and θj

go to zero as j goes to infinity and

lim
j→∞

ρj+1

ρj
=

1

2
.

These facts are formally stated in Lemma 5.1 of [8]:

Lemma 1 Suppose Assumption 1 and the standardizations (8) are satisfied.
Then for any s ∈ N ∩ S \ Π0

−1(0) the Newton iteration converges linearly
with common ratio 1/2 from all points in the nonempty starlike domain Ws.
Further, the iterates remain in the starlike domain Is.

Theorem 1 is obtained by combining this result with the analysis of the
first step from x0 to x1, discussed above.

5 Acceleration of Newton’s Method

Overrelaxation is known to improve the rate of convergence of Newton’s
method to a singular solution [9]. The overrelaxed iterate is

(44) xj+1 = xj − αF ′(xj)
−1F (xj),

where α is some parameter in the range [1, 2). (Of course, α = 1 corresponds
to the usual Newton step.)

We focus on a technique in which overrelaxation occurs only on every
second step; that is, standard Newton steps are interspersed with steps of
the form (44) for some fixed α ∈ [1, 2). Broadly speaking, each pure Newton
step refocuses the error along the null space N . Kelley and Suresh prove
superlinear convergence for this method when α is systematically increased
to 2 as the iterates converge [16]. However, their proof requires the third
derivative of F evaluated at x∗ to satisfy a boundedness condition.

In this section, we state our main result and motivate its proof, highlight-
ing some key points. The lengthy proof appears in full in [18, Section 5].

We assume that 21-regularity holds at x∗, F ′ is strongly semismooth at
x∗, and that x0 ∈ Rα, where Rα is a starlike domain defined in (60) whose
excluded directions are identical to those of R defined in Section 4 but whose
rays are shorter. In fact, as α is increased to 2, the rays of the starlike domain
Rα shrink in length to zero.
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Theorem 2 Suppose Assumption 1 holds and let α ∈ [1, 2). There exists a
starlike domain Rα ⊆ R about x∗ such that if x0 ∈ Rα and with iterates
defined by

x2j+1 = x2j − F ′(x2j)
−1F (x2j) and(45)

x2j+2 = x2j+1 − αF ′(x2j+1)
−1F (x2j+1),(46)

for j = 0, 1, 2, . . . , then the iterates {xi} for i = 0, 1, 2, . . . converge linearly
to x∗ and

lim
j→∞

‖x2j+2 − x∗‖

‖x2j − x∗‖
=

1

2

(

1 −
α

2

)

.

We first describe a key step of the proof. Since the problem is in standard
form, we have from (40) that the Newton step (45) satisfies the following
relationships for x2k ∈ R̄:

(47) x2k+1 =
1

2

[

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k + e(x2k) =
1

2
g(x2k) + e(x2k),

for all k ≥ 0, where g(·) is defined in (30) and the remainder term e(·) is
defined in (38). As in (39), we have

(48) ‖e(x2k)‖ ≤ δ
ρ2
2k

σ2
2k

.

For the accelerated Newton step (46), using manipulations similar to those
leading to (40), we have for x2k+1 ∈ R̄ that

(49) x2k+2 =

[

(1 − α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1 − α)I

]

x2k+1 + αe(x2k+1),

for all k ≥ 0. By substituting (47) into (49), we obtain

x2k+2 =
1

2

[

(1 − α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1 − α)I

] [

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k(50)

+ ẽα(x2k, x2k+1),

where
(51)

ẽα(x2k, x2k+1) =

[

(1 − α
2 )I α

2 B̄(t2k+1)
−1C̄(t2k+1)

0 (1 − α)I

]

e(x2k) + αe(x2k+1).

Multiplying the matrices in (50), we have

x2k+2 =
1

2

(

1 −
α

2

)

[

I B̄(t2k)−1C̄(t2k)
0 0

]

x2k + ẽα(x2k, x2k+1)

=
1

2

(

1 −
α

2

)

g(x2k) + ẽα(x2k, x2k+1),(52)
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To bound the remainder term, note that |1− α
2 |+ |1− α| = α

2 for α ∈ [1, 2),
so we have from (51) that

‖ẽα(x2k, x2k+1)‖ ≤
α

2

(

1 + ‖B̄(t2k+1)
−1‖‖C̄(t2k+1)‖

)

‖e(x2k)‖ + α‖e(x2k+1)‖

≤

(

σ2k+1 + ‖C̄(t2k+1)‖

σ2k+1

)

δ
ρ2
2k

σ2
2k

+ αδ
ρ2
2k+1

σ2
2k+1

from α < 2, (14), and (39)

≤ cδ
ρ2
2k

σ2k+1σ2
2k

+ αδ
ρ2
2k+1

σ2
2k+1

from (21)

≤ δ̃
ρ2
2k + ρ2

2k+1

µ3
2k

,(53)

where

(54) µ2k := min(σ2k, σ2k+1)

and δ̃ := δmax(c, α). If x2k = ρ2kt2k for t2k ∈ S and x2k+1 = ρ2k+1t2k+1 for
t2k+1 ∈ S are sufficiently close to x∗ and σ(t2k) and σ(t2k+1) are bounded
below by a positive number, then x2k+2 satisfies

x2k+2 =
1

2
(1 −

α

2
)g(x2k) +O(‖x2k‖

2).

The proof provides a single positive lower bound for σ(t2k) and σ(t2k+1) for
all subsequent iterates. Hence, 1

2 (1 − α
2 )g(x2k) is a first order approxima-

tion to the double step achieved by applying a Newton step followed by an
overrelaxed Newton step from x2k.

We introduce the following new parameters:

(55) qα(s) :=
1 − α/2

4
sinφ(s), for s ∈ N ∩ S,

We define the angle φ̃α(s), for which 0 ≤ φ̃α(s) ≤ π/2, by the equality
(56)

sin φ̃α(s) := min

{

qα(s)

c/σ̂(s) + 1 − qα(s)
,

2δr̂(s)

(1 − qα(s))σ̂2(s)

}

, for s ∈ N ∩ S.

We further define

(57) ρ̃α(s) :=
(1 − α/2 − qα(s))σ̂3(s)

4δ̃
sin φ̃α(s) for s ∈ N ∩ S,

(58) Ws,α := {x = ρt | t ∈ S, cos−1(tT s) < φ̃α(s), 0 < ρ < ρ̃α(s)},

and

(59) Is,α := {x = ρt | t ∈ S, cos−1(tT s) < φ(s), 0 < ρ < ρ̃α(s)}.
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It can be shown that Ws,α ⊆ Is,α ⊆ R̄. The starlike domain of convergence
is defined as follows:

(60) Rα := {x = ρt | t ∈ S, 0 < ρ < rα(t)},

where
(61)

rα(t) := min

{

r̄(t),
σ2(t)ρ̃α(s(t))

2δrb + cσ(t) + σ2(t)
,
‖g(t)‖σ2(t)(1 − α/2) sin φ̃α(s(t))

8δ

}

and s(t) = g(t)/‖g(t)‖ ∈ N ∩ S.
As in Section 4, the angle between iterate xi = ρiti and the null space N

is denoted by θi, while ψi(s0) denotes the angle between xi and s0 (41). The
proof of Theorem 2 is by induction. The induction step consists of showing
that if

ρ2k+ι < ρ̃α(s0), θ2k+ι < φ̃α(s0), and ψ2k+ι(s0) < φ(s0),

for ι ∈ {1, 2}, all k with 0 ≤ k < j,(62)

then

ρ2j+ι < ρ̃α, θ2j+ι < φ̃α(s0), and ψ2j+ι(s0) < φ(s0) for ι ∈ {1, 2}.(63)

For all i = 1, 2, . . . , the third property in (62) and (63), ψi(s0) < φ(s0),
implies that σ(ti) ≥ σ̂(s0) > 0; see (20) and (43). By the first and third
properties, the iterates remain in Is0,α. Since Is0,α ⊆ R̄, the bounds of
Subsection 4.3 together with (47) and (49) are valid for our iterates.

The anchor step of the induction argument consists of showing that for
x0 ∈ Rα, we have x1 ∈ Ws0,α and x2 ∈ Is0,α with θ2 < φ̃α. Indeed, these
facts yield (62) for j = 1.

The convergence rate claimed in the theorem is a byproduct of the proof
of the induction step.

6 Application to Nonlinear Complementarity Problems

The nonlinear complementarity problem for the function f : IR
n → IR

n is as
follows: Find an x ∈ IR

n such that

0 ≤ f(x), x ≥ 0, xT f(x) = 0. NCP(f)

Let x∗ be a solution of NCP(f). We assume that f ′ is well defined and
strongly semismooth at x∗. We apply a nonlinear-equations reformulation
to the NCP. We do not standardize the resulting equations (as we did ear-
lier in (8) to simplify the discussions of Sections 4 and 5), as the rescaling
and shifting needed to enforce this assumption would complicate this section
considerably.

We tailor the convergence results of previous sections to this reformula-
tion, interpret the 2-regularity condition for the NCP(f), and provide condi-
tions under which the starlike domain of convergence is “directionally dense”
at the solution.
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6.1 NCP Notation

We use ei to denote the ith column of the identity matrix. The notation
〈·, ·〉 denotes the inner product between two vectors. For any x ∈ IR

n, we use
diagx to denote the IR

n×n diagonal matrix formed from the components of
x.

We define the inactive, biactive, and active index sets, α, β, and γ re-
spectively, at a solution x∗ of NCP(f) as follows,







i ∈ α, if x∗i = 0, fi(x
∗) > 0,

i ∈ β, if x∗i = 0, fi(x
∗) = 0,

i ∈ γ, if x∗i > 0, fi(x
∗) = 0.

For the vector function f and its derivatives, we give a sample of the
notational conventions used below. fγ(x∗) denotes the |γ|-vector whose com-

ponents are fi(x
∗), i ∈ γ. We use f ′

i,γ(x∗)to denote the vector in IR
|γ| with

elements dfi

dxj
(x∗), j ∈ γ, while f ′

γ,α(x∗) denotes the matrix in IR
|γ|×|α| whose

elements are dfi

dxj
(x∗), for i ∈ γ and j ∈ α. The notation f ′

γ(x∗) represents the

matrix in IR
|γ|×n whose elements are dfi

dxj
(x∗), for i ∈ γ and j = 1, 2, . . . , n.

6.2 The Nonlinear-Equations Reformulation

Recall the nonlinear-equations reformulation Ψ (7) of the NCP (1), and con-
sider the use of Newton’s method for solving Ψ(x) = 0. Taking the derivative
of Ψ , we have

Ψ ′
i(x) = 2{(fi(x) − min(0, xi + fi(x)))ei(64)

+ (xi − min(0, xi + fi(x)))f
′
i (x)}, for i = 1, 2, . . . , n.

It can be seen that Ψ ′ is strongly semismooth when f ′ is strongly semismooth
by applying the following two facts: From [6, Proposition 7.4.4], the compo-
sition of strongly semismooth functions is strongly semismooth, and from [6,
Proposition 7.4.7], every piecewise-affine map is strongly semismooth.

At the solution x∗, Ψ ′
i simplifies to

Ψ ′
i(x

∗) = 2{fi(x
∗)ei + x∗i f

′
i(x

∗)}.

By inspection, we have






Ψ ′
i(x

∗) = 2fi(x
∗)ei, i ∈ α,

Ψ ′
i(x

∗) = 0, i ∈ β,
Ψ ′

i(x
∗) = 2x∗i f

′
i(x

∗), i ∈ γ.

The null space of Ψ ′(x∗) (whose ith row is the transpose of Ψ ′
i) is

(65) N ≡ kerΨ ′(x∗) = {ξ ∈ IR
n | f ′

γ(x∗)ξ = 0, ξα = 0},

so that
dim N = dimker f ′

γ,β∪γ(x∗).
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In particular, if β 6= ∅, then dim N > 0 and x∗ is a singular solution of
Ψ(x) = 0. The null space of Ψ ′(x∗)T is

N∗ = {ξ ∈ IR
n | ξα = −(diag fα(x∗))−1(f ′

γ,α(x∗))T (diagx∗γ)ξγ ,(66)

f ′
γ,β∪γ(x∗)T (diag x∗γ)ξγ = 0}.

If rank f ′
γ,β∪γ(x∗) = |γ|, then N∗ = {ξ ∈ IR

n | ξα = 0, ξγ = 0}.
The 2-regularity condition (5) for Ψ at x∗ and d ∈ IR

n is

(67) (PN∗
Ψ ′)′(x∗; d)|N is nonsingular.

By direct calculation, we have

1

2
(Ψ ′)′i(x; d) = (〈f ′

i(x), d〉−ηi)ei+(di−ηi)f
′
i(x)+(xi−min(0, xi+fi(x)))(f

′
i )

′(x; d),

where ηi := min(0, xi + fi(x))
′(x; d). We calculate this quantity using the

result [6, Proposition 3.1.6] for the composition of B-differentiable functions:

ηi =







min(0, di + 〈f ′
i(x), d〉), if xi + fi(x) = 0,

0, if xi + fi(x) > 0,
di + 〈f ′

i(x), d〉, if xi + fi(x) < 0.

At a solution x∗, we have ηi = 0 for i ∈ α∪γ, and ηi = min(0, di+〈f ′
i(x

∗), d〉)
for i ∈ β. Hence, we have

(68)
1

2
(Ψ ′

i)
′(x∗; d) =











〈f ′
i(x

∗), d〉ei + dif
′
i(x

∗), i ∈ α,
(〈f ′

i(x
∗), d〉 − min(0, di + 〈f ′

i(x
∗), d〉))ei

+ (di − min(0, di + 〈f ′
i(x

∗), d〉))f ′
i(x

∗), i ∈ β,
〈f ′

i(x
∗), d〉ei + dif

′
i(x

∗) + x∗i (f
′
i)

′(x∗; d), i ∈ γ.

By noting that for any scalars s1, s2 we have

s1 −min(0, s2) = s1 +max(0,−s2) = max(s1, s1 − s2) = −min(−s1, s2 − s1),

we can rewrite (68) as follows
(69)

1

2
(Ψ ′

i)
′(x∗; d) =







〈f ′
i(x

∗), d〉ei + dif
′
i(x

∗), i ∈ α,
max(〈f ′

i(x
∗), d〉,−di)ei − min(〈f ′

i(x
∗), d〉,−di)f

′
i(x

∗), i ∈ β,
〈f ′

i(x
∗), d〉ei + dif

′
i(x

∗) + x∗i (f
′
i)

′(x∗; d), i ∈ γ.

Using the notation
r = rank f ′

γ,β∪γ(x∗),

we define an orthonormal matrix Z of dimension |γ|×r such that the columns
of Z span range f ′

γ,β∪γ(x∗), and another orthonormal matrix Z⊥ of dimen-

sions |γ| × (|γ| − r) such that the columns of Z⊥ span ker f ′
γ,β∪γ(x∗)T . Note

that [Z |Z⊥] is an orthogonal matrix of dimensions |γ|× |γ|. (The matrices Z
and Z⊥ are not uniquely defined by the conditions above, but the properties
discussed below are independent of the particular choices used.)

In the remainder of this section, we often drop the argument x∗ from f
and f ′, for clarity.
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Proposition 1 2-regularity (67) holds for d ∈ IR
n at a solution x∗ of Ψ(x) =

0 if and only if the matrix

(70)











[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei − min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥

[

(f ′
i)

′(x∗; d) + (1/x∗i )〈f
′
i , d〉e

T
i − f ′

i,αdiag (dj/fj)j∈αf
′
α

]

i∈γ











is nonsingular. Further, for d ∈ N , 2-regularity holds if and only if the sim-
pler matrix

(71)









[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei − min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥(f ′

γ)′(x∗; d)









is nonsingular.

Proof The claim that (PN∗
Ψ ′)′(x∗; d)|N is nonsingular for some d ∈ IR

n (67)
is equivalent to

PN∗
(Ψ ′)′(x∗; d)v = 0 and v ∈ N ⇒ v = 0.

For v ∈ N , we have from (65) and (69) that

1

2
(Ψ ′

i)
′(x∗; d)v =







di〈f ′
i , v〉, i ∈ α

max(〈f ′
i , d〉,−di)vi − min(〈f ′

i , d〉,−di)〈f ′
i , v〉, i ∈ β

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉, i ∈ γ.

(72)

Since N∗ is defined in (66) to have the form {ξ ∈ IR
n |Aξ = 0} for some

matrix A, we have that PN∗
w = 0 if and only if w = AT z for some z. In our

case, we have

(73)
1

2
(Ψ ′)′(x∗; d)v =





diag fα 0 0
0 0 0

(diag x∗γ)f ′
γ,α (diagx∗γ)f ′

γ,β (diagx∗γ)f ′
γ,γ









zα

zβ

zγ



 ,

for some z ∈ IR
n. By matching components from this expression and (72), we

have that PN∗
(Ψ ′)′(x∗; d)v = 0 if for some z ∈ IR

n we have

di〈f
′
i , v〉 = zifi, i ∈ α,

max(〈f ′
i , d〉,−di)vi − min(〈f ′

i , d〉,−di)〈f
′
i , v〉 = 0, i ∈ β,

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉 = x∗i
[

〈f ′
i,α, zα〉 + 〈f ′

i,β , zβ〉 + 〈f ′
i,γ , zγ〉

]

, i ∈ γ.

Rearranging the first equation above yields an expression for zα, which can
be substituted into the third equation to give the following:

0 = max(〈f ′
i , d〉,−di)vi − min(〈f ′

i , d〉,−di)〈f
′
i , v〉, i ∈ β,(74a)

〈f ′
i , d〉vi + x∗i 〈(f

′
i)

′(x∗; d), v〉 − x∗i 〈f
′
i,α, diag (dj/fj)j∈α f

′
αv〉

= x∗i
[

f ′
i,βzβ + f ′

i,γzγ

]

, i ∈ γ.(74b)
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Using the definition of Z, we can rewrite (74b) as follows:
[

(1/x∗i )〈f
′
i , d〉vi + 〈(f ′

i)
′(x∗; d), v〉 − 〈f ′

i,α, diag (dj/fj)j∈α f
′
αv〉

]

i∈γ
= Zt,

for some t ∈ IR
r, so that

(75) ZT
⊥

[

(1/x∗i )〈f
′
i , d〉e

T
i + (f ′

i)
′(x∗; d) − f ′

i,α, diag (dj/fj)j∈αf
′
α

]

i∈γ
v = 0.

Since v ∈ N , we have from (65) that

(76) vα = 0, f ′
γv = 0.

The second condition of (76) is equivalent to

(77)

[

ZT

ZT
⊥

]

f ′
γv =

[

ZT

ZT
⊥

]

[

f ′
γ,α f

′
γ,β f

′
γ,γ

]

v = 0.

Because
ZT
⊥

[

f ′
γ,α f

′
γ,β f

′
γ,γ

]

v =
[

ZT
⊥f

′
γ,α 0 0

]

v = ZT
⊥f

′
γ,αvα

and vα = 0, the second block row in the system (77) does not add any
information and can be dropped. Hence, we can write (76) equivalently as

(78) vα = 0, ZT f ′
γv = 0.

By gathering the conditions equivalent to v ∈ N and PN∗
(Ψ ′)′(x∗; d)v = 0,

namely, (74a), (75), and (78), we have










[

eT
i

]

i∈α

[max(〈f ′
i , d〉,−di)ei − min(〈f ′

i , d〉,−di)f
′
i ]

T
i∈β

ZT f ′
γ

ZT
⊥

[

(f ′
i)

′(x∗; d) + (1/x∗i )〈f
′
i , d〉e

T
i − f ′

i,αdiag (dj/fj)j∈αf
′
α

]

i∈γ











v = 0,

from which we deduce that v = 0 whenever the coefficient matrix in this
expression is nonsingular. Hence x∗ is 2-regular for Ψ with respect to d ∈ IR

n

if the matrix (70) is nonsingular. For d ∈ N , we have by the definition
of N (65) that 〈f ′

i , d〉 = 0 for i ∈ γ and dα = 0. Upon applying these
simplifications to the above matrix, we have precisely the matrix (71).

Recall from Definition 6 that Ψ (7) is 21-regular at x∗ if (PN∗
Ψ ′)′(x∗; d)|N

is nonsingular for some d in N , that is, if the matrix (71) is nonsingular for
some d ∈ N . The following theorem specializes Theorems 1 and 2 for applying
Newton’s method to the nonlinear-equations reformulation Ψ(x) of NCP(f).

Theorem 3 Consider a solution x∗ of NCP(f) for f : IR
n → IR

n with f ′

strongly semismooth at x∗. Suppose that x∗ is a singular solution in the sense
that N = ker f ′

γ,β∪γ(x∗) is nontrivial. Suppose also that the matrix (71) is
nonsingular for some d ∈ N . Then there exists a starlike domain R about x∗,
such that, if Newton’s method for the nonlinear-equations reformulation Ψ(x)
is initialized at any x0 ∈ R, the iterates converge linearly to x∗ with rate 1/2.
Furthermore, if Newton’s method is accelerated according to (45) and (46) for
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some α ∈ [1, 2), then there exists a starlike domain Rα ⊆ R about x∗, such
that if x0 ∈ Rα then the accelerated iterates {xi} for i = 0, 1, 2, . . . , converge
linearly to x∗ and

lim
j→∞

‖x2j+2 − x∗‖

‖x2j − x∗‖
=

1

2

(

1 −
α

2

)

.

6.3 2-regularity Conditions for Special Cases of the NCP

In this section we show that the regularity conditions (70) and (71) simplify
to more familiar regularity conditions in special cases of the NCP.

Nondegenerate NCP. Consider the case of nondegenerate NCP. We obtain a
simpler regularity condition, related to 2-regularity for nonlinear equations,
that ensures that 2-regularity holds for some d ∈ N , and hence that the
conditions of Theorem 3 are satisfied.

Theorem 4 Suppose that β = ∅. Then the NCP satisfies 21-regularity at the
solution x∗ if and only if

(79) PNf
∗γ

(f ′
γ,γ)′(x∗; d)|Nf

γ

is nonsingular for d ∈ N , where

Nf
γ = {ξγ ∈ IR

|γ| | f ′
γ,γξγ = 0}, Nf

∗γ = {ξγ ∈ IR
|γ| | (f ′

γ,γ)T ξγ = 0}.

Proof Let the orthonormal matrices Z⊥ and Z be as in (71), and define
two additional orthonormal matrices Z̄ and Z̄⊥ such that the columns of Z̄⊥

span ker f ′
γ,γ (and hence the space Nf

γ ), the columns of Z̄ span range (f ′
γ,γ)T ,

and
[

Z̄ | Z̄⊥

]

is orthogonal. We have Z̄ ∈ IR
|γ|×r and Z̄⊥ ∈ IR

|γ|×(|γ|−r).
Specializing 2-regularity for d ∈ N (71) to the case of β = ∅, we have that
21-regularity is equivalent to nonsingularity of the following matrix for some
d ∈ N :





[

eT
i

]

i∈α

ZT
[

f ′
γ,α(x∗) f ′

γ,γ(x∗)
]

ZT
⊥(f ′

γ)′(x∗; d)





[

Iα 0
0

[

Z̄ Z̄⊥

]

]

,

where Iα is the identity matrix of dimension |α|. By forming the matrix
product, we find that it is block lower triangular. Therefore, nonsingularity
of the matrix product is equivalent to nonsingularity of the three (square)
diagonal blocks, which are

Iα, ZT f ′
γ,γ(x∗)Z̄, ZT

⊥(f ′
γ,γ)′(x∗; d)Z̄⊥,

which have dimensions |α|, r, and |γ| − r, respectively. It is easy to see that
ZT f ′

γ,γ(x∗)Z̄ is nonsingular by the definition of Z and Z̄. Since the columns of

Z⊥, as defined earlier, must span the subspace Nf
∗γ , and since the columns of

Z̄⊥ span the subspace Nf
γ , nonsingularity of ZT

⊥(f ′
γ,γ)′(x∗; d)Z̄⊥ is equivalent

to condition (79).
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Nonlinear Equations. We now consider the case in which α = β = ∅, so that
the NCP reduces essentially to a system of nonlinear equations f(x) = 0
whose solution is at x = x∗. In the nondegenerate case in which f ′

γ,γ(x∗) ≡
f ′(x∗) has full rank n, we have from definition (65) that N = {0}, so that x∗

is a nonsingular solution and Theorem 3 does not apply. Therefore, suppose
that f ′(x∗) has rank less than n and α = β = ∅—essentially the case of
singular nonlinear equations. By specializing the discussion of nondegenerate
NCP, we have from the definitions in Theorem 4 that

Nf = ker f ′(x∗), Nf
∗ = ker f ′(x∗)T ,

where we have dropped the subscript γ. Hence, 2-regularity is satisfied for
some d ∈ N if

PNf
∗

(f ′)′(x∗; d)|Nf is nonsingular for some d ∈ N .

This is the 21-regularity condition for nonlinear equations (Definition 6).

NCP with a Modified Weak Regularity Condition. We now consider another
special case in which we remove the condition β = ∅ and assume that the
matrix f ′

γ,β∪γ(x∗) has full rank. This assumption is similar to the weak reg-

ularity condition of Daryina et al. [1], which is a full-rank assumption on
f ′

β∪γ,γ(x∗). (The two assumptions are identical when β = ∅ or f ′ is symmet-

ric, as is the case when f is the gradient of a scalar function.)

Theorem 5 If for d ∈ IR
n the set of n vectors in IR

n

{ei}i∈α ∪ {f ′
i(x

∗)}i∈γ ∪ {〈f ′
i(x

∗), d〉ei + dif
′
i(x

∗)}i∈β1
∪(80)

{〈f ′
i(x

∗), d〉f ′
i(x

∗) + diei}i∈β2
,

where β1 := β1(d) and β2 := β2(d), with

β1(d) := {i ∈ β | 〈f ′
i(x

∗), d〉 > −di},(81a)

β2(d) := {i ∈ β | 〈f ′
i(x

∗), d〉 ≤ −di},(81b)

is linearly independent, then 2-regularity (70) is satisfied by the NCP at x∗

for d ∈ IR
n. Conversely, if f ′

γ,β∪γ(x∗) has full rank and 2-regularity holds for

d ∈ IR
n at x∗, then the set of vectors (80) is linearly independent.

Proof Observe that if f ′
γ,β∪γ(x∗) has full rank, we can set Z = I and Z⊥

null, so the matrix in (70) reduces to





[

eT
i

]

i∈α

[max(〈f ′
i(x

∗), d〉,−di)ei − min(〈f ′
i(x

∗), d〉,−di)f
′
i(x

∗)]
T
i∈β

f ′
γ(x∗)



 .

By partitioning the index set β according to (81), we see that nonsingularity
of this matrix is equivalent to linear independence of the vectors (80).
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As discussed at the end of Section 4, 2-regularity for almost every d ∈ IR
n

is necessary for “directional denseness” of the starlike domain of convergence.
According to Theorem 5, it is sufficient to require linear independence of the
vectors (80) for the partition (β1, β2) of β defined in (81) for almost every
d ∈ IR

n. This condition is similar to the quasi-regularity condition of Izmailov
and Solodov [12, Definition 4.1], which requires linear independence of the
vectors (80) for every partition (β1, β2) of β for some fixed d ∈ IR

n.

6.4 “Directional Denseness” of the Starlike Domain.

In this subsection, we give sufficient conditions for the starlike domain of
convergence R (31) (or Rα (60)), to be “directionally dense” at the solution
x∗ in terms of f .

Definition 8 A starlike domain R about x∗ ∈ IR
n is directionally dense at

x∗ if for almost every t ∈ S,

there exists Ct > 0 such that x = x∗ + ρt ∈ R for all ρ ∈ (0, Ct).(82)

A direction t satisfies (82) if and only if t is not an excluded direction, as
defined in Section 2.

We recall the characterization of the excluded directions of R from (33):
A direction t ∈ S is excluded if and only if one of the following is true:

(83) t ∈ Π−1
0 (0), g(t) = 0, or g(t)/‖g(t)‖ ∈ Π−1

0 (0).

The first condition of (83) fails if Ψ satisfies the 2-regularity condition (67) for
t, and the third condition of (83) fails if Ψ satisfies the 2-regularity condition
(67) for g(t)/‖g(t)‖. Applying Proposition 1 and noting that range g = N ,
the first condition of (83) fails if the matrix (70) is nonsingular for d = t and
the third condition of (83) fails if the simpler matrix (71) is nonsingular for
d = g(t)/‖g(t)‖.

Now consider the second condition of (83). For x ∈ IR
n withΠ0(x−x∗) 6= 0

and ‖x−x∗‖ sufficiently small, recall from (30) that the Newton iterate from
x is x∗ + 1

2g(x − x∗) +O(‖x − x∗‖2), where g : (IRn \Π−1
0 (0)) → N ⊆ IR

n is
the positively homogeneous vector defined by

g(x− x∗) = ρg(t) = PN (x− x∗)(84)

+ ((PN∗
Ψ ′)′(x∗; t)|N )−1(PN∗

Ψ ′)′(x∗; t)|N⊥
PN⊥

(x− x∗),

for x = x∗ + ρt, ρ = ‖x− x∗‖, and t ∈ S. As in (34), we have

(85) g(d) = 0 ⇔ (PN∗
Ψ ′)′(x∗; d)d = 0, for d ∈ IR

n \Π−1
0 (0).

From (69), dividing the set β into β1(d) and β2(d) (81) for d ∈ IR
n, we have

(86)
1

2
(Ψ ′

i)
′(x∗; d)d =











2di〈f ′
i(x

∗), d〉, i ∈ α,
2di〈f ′

i(x
∗), d〉, i ∈ β1(d),

−d2
i − 〈f ′

i(x
∗), d〉2, i ∈ β2(d),

2di〈f ′
i(x

∗), d〉 + x∗i 〈(f
′
i)

′(x∗; d), d〉, i ∈ γ.
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To express (PN∗
Ψ ′)′(x∗; d)d = 0 in terms of f , we recall from the proof of

Proposition 1 that PN∗
w = 0 if and only if w = AT z for some z ∈ IR

n, where
AT z is the right-hand side of (73). That is, (PN∗

Ψ ′)′(x∗; d)d = 0 for d ∈ IR
n

if and only if there is some z ∈ IR
n for which

2di〈f
′
i(x

∗), d〉 = fizi, i ∈ α,(87a)

2di〈f
′
i(x

∗), d〉 = 0, i ∈ β1(d),(87b)

d2
i + 〈f ′

i(x
∗), d〉2 = 0, i ∈ β2(d),(87c)

2di〈f
′
i(x

∗), d〉 + x∗i 〈(f
′
i)

′(x∗; d), d〉 = x∗i 〈f
′
i , z〉, i ∈ γ.(87d)

Thus, if t ∈ IR
n \Π−1

0 (0) and (87) has no solution z for t = d, then g(t) 6= 0
and the second condition of (83) fails. In fact, it seems quite likely that (87)
has no solution z ∈ IR

n for most d ∈ IR
n. If β 6= ∅ and f ′

i 6= 0 for every i ∈ β,
then (87b) and (87c) fail almost surely. This is because, for any d ∈ IR

n, di is
almost surely nonzero for i = 1, 2, · · · , n, and, if f ′

i 6= 0 for every i ∈ β, then
〈f ′

i , d〉 is almost surely nonzero for i ∈ β. If β = ∅, the conditions (87) can
be simplified as follows. Solving (87a) for zα and substituting zα into (87d),

we find that a solution of (87) requires some zγ ∈ IR
|γ| that solves

2diag (di/x
∗
i )〈f

′
i(x

∗), d〉 + 〈(f ′
i)

′(x∗; d), d〉 − 〈f ′
i,α(x∗), zα〉(88)

= 〈f ′
i,γ(x∗), zγ〉, all i ∈ γ.

Equation (88) is solvable only if the left-hand side, which is an element of

IR
|γ|, lies in the subspace spanned by rangef ′

γ,γ(x∗) as is required by the right-
hand side. Since, by assumption, the (left) null spaceN∗ is nontrivial, we have
from (66) that ker(f ′

γ,γ(x∗))T is nontrivial. Hence, the complementary space

rangef ′
γ,γ(x∗) must be a strict subspace of IR

|γ|. It seems likely that this
containment will typically fail for almost all directions d ∈ IR

n.
In summary, the starlike domain of convergenceR is directionally dense at

the solution x∗ if (1) nonsingularity of (70) holds for almost every d = t ∈ S,
(2) for almost every d ∈ IR

n, the system of equations (87) fails to have a
solution z ∈ IR

n, and (3) nonsingularity of (71) holds for almost every d =
g(t)/‖g(t)‖ with t ∈ S. Conditions (1) and (2) involve only the NCP function
f , while condition (3) involves Ψ through the definition of g. If we assume
that N ∩ Π−1

0 (0) = {0}, then condition (3) is trivially satisfied because

range g = N . The assumption N ∩Π−1
0 (0) = {0} appears in Section 1 under

the name 2∀-regularity (Definition 4). As discussed in Section 1, 2∀-regularity
is a strong form of 2-regularity which, in particular, implies isolation of the
solution. However, this assumption allows us to write the conditions ensuring
directional denseness of the starlike domain of convergence entirely in terms
of f , as we now state formally.

Theorem 6 Consider a solution x∗ of NCP(f) for f : IR
n → IR

n with f ′

strongly semismooth at x∗. Suppose that x∗ is a singular solution in the sense
that N = ker f ′

γ,β∪γ(x∗) is nontrivial. The starlike domain of convergence R
for Newton’s method (or Rα for α ∈ [1, 2) for the 2-step accelerated Newton’s
method (45) and (46)) applied to the nonlinear-equations reformulation Ψ(x)
of NCP(f) is directionally dense if the following conditions hold:
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(i) the matrix (70) is nonsingular for almost every d ∈ IR
n,

(ii) the system of equations (87) has no solution z ∈ IR
n for almost every

d ∈ IR
n, and

(iii) the matrix (71) is nonsingular for every d ∈ N \ {0}.

7 Numerical Results on Simple NCPs

We describe here some computational results obtained from a simple test
set of NCPs of small dimension, defined in Appendix A. Properties of the
problems are shown in Table 1. If the problem has more than one default
starting point/solution pair, a numerical code is appended to the problem
name. (These starting points and solutions are listed in Table 3.) The conver-
gence rate shown in Table 1 is for Newton’s method with unit step length. We
also tabulate the sizes of the sets α, β, and γ, and the satisfaction of various
rank and regularity properties at the solution in question. (2T -regularity is
defined in Definition 7, and 2ae-regularity in Definition 5. For a definition of
b-regularity, see [6, Definition 3.3.10].)

The solutions of our test problems are all isolated except for the solution
x∗ = (0, 1) of the problems affknot1 and quadknot. 2T -regularity fails at
this solution for both of these problems, consistently with the fact that 2T -
regularity is sufficient for isolation. The 2ae-regularity condition holds for
quadknot at x∗ = (0, 1) and, as suggested by our theory, Newton’s method
converges from arbitrary, nearby starting points to this solution. For affknot1,
2ae-regularity fails at x∗ = (0, 1), and we observe convergence to this solution
only from points x0 for which the projection of x0 − x∗ onto the null space
N (65) gives a direction for which 2-regularity holds. Specifically, for affknot1,
we have N = {δe2 | δ ∈ IR}, and 2-regularity along d = δe2 fails if δ ≥ 0 and
holds if δ < 0. Accordingly, Newton’s method converges to x∗ = (0, 1) with
rate 1/2 from starting points x0 = (x1

0, x
2
0) with x2

0 < 1, while if x2
0 > 1,

Newton’s method converges in one step to the solution (0, x2
0).

Only affknot1, quad1, and quad2 satisfy 2-regularity on a set of directions
in N (or IR

n) having measure that is positive but less than 1. For affknot1,
2-regularity holds for half of the directions in N but almost every direction
in IR

n. The problems quad1 and quad2 satisfy 2-regularity for half of the di-
rections in both N and IR

n. As a result, convergence to the solutions of these
problems occurs with two different rates. The first starting points for quad1
and quad2 in Table 1 demonstrate convergence along a direction satisfying
2-regularity with rate 1/2, while the second starting points demonstrate con-
vergence along a direction failing 2-regularity with slower convergence rate.

All problems but quarquad2, quarp,2, and quarn satisfy 2-regularity (67)
for some d ∈ IR

n. Further, most of the problems also satisfy 2-regularity
for almost every d ∈ IR

n; only the problems failing 2ae-regularity, except for
affknot1, fail to be 2-regular for almost every d ∈ IR

n.
In Table 2, we report the numbers of iterations required for local conver-

gence of Newton’s method and the Accelerated Newton method of Section 5
for the subset of Simple NCP test problems and starting points giving conver-
gence rates for Newton’s method of 1/2. This is the subset of problems with a
nontrivial null space N for which 2ae-regularity may hold. (In fact, affknot1,
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Table 1 Convergence rate of Newton’s Method on Ψ for the Simple NCP test
problems, showing regularity properties. (• = property satisfied, blank = property
not satisfied, — = property not applicable.)

Problem, s.p. n dim N cgce rate |α| |β| |γ| full rank regularity

f ′

γ,γ f ′

γ,β∪γ b 2T 2ae

quarp, 1 1 0 suplin 1 0 0 — — • — —
aff1 2 0 suplin 1 0 1 • • • — —
DIS61, 2 2 0 suplin 1 0 1 • • • — —
quarquad, 1 2 1 1/2 0 1 1 • • • • •
affknot1 2 1 1/2 0 1 1 •
affknot2 2 1 1/2 0 1 1 • • • • •
quadknot 2 2 1/2 0 1 1 •
munson4 2 2 1/2 0 0 2 • •
DIS61, 1 2 2 1/2 0 1 1 • •
DIS64 2 2 1/2 0 2 0 — — • • •
ne-hard 3 2 1/2 0 2 1 • • •
doubleknot 4 2 1/2 0 2 2 • • • • •
quad1,1 2 1 1/2 0 1 1 • •
quad2,1 2 2 1/2 0 2 0
quad1,2 2 1 2/3 0 1 1 • •
quad2,2 2 2 2/3 0 2 0
quarquad, 2 2 1 3/4 1 0 1
quarp, 2 1 1 3/4 0 0 1
quarn 1 1 3/4 0 0 1

quad1,1, and quad2,1 have convergence rates of 1/2 for Newton’s method
but do not satisfy 2ae-regularity. Despite the absence of 2ae-regularity, the
acceleration technique of Section 5 hastens the convergence.) We detect lin-
ear convergence at a rate of 1/2 by applying the following tests to successive
Newton steps pi:

∣

∣

∣

∣

‖pi‖

‖pi−1‖
−

‖pi−1‖

‖pi−2‖

∣

∣

∣

∣

< cCauchy and

∣

∣

∣

∣

‖pi‖

‖pi−1‖
−

1

2

∣

∣

∣

∣

< cLinear

with cCauchy = .005 and cLinear = .01. If both tests are satisfied at itera-
tion i, we scale the next step pi+1 (and every second step thereafter) by the
acceleration factor α = 1.9. Convergence is declared when ‖Ψ(x)‖ ≤ 10−11.

The final column of Table 2 shows the number of steps taken in the
“accelerated phase,” following detection of a linear convergence rate in the
pure Newton method. Note that the accelerated phase was present for all
problem instances and that the number of steps taken in this phase is similar
for all problems. For α = 1.9, the convergence rate in the accelerated phase
predicted by Theorem 2 was observed for all problems.

A Simple NCP Test Set: Problem Descriptions

Below we list the Simple NCP test problems, their solutions, and the corresponding
starting points used to initialize Newton’s method. A solution is any x satisfying

0 ≤ x ⊥ f(x) ≥ 0,
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Table 2 Performance of Accelerated Newton Method (with α = 1.9) for the NCP
test problems for which the convergence rate of pure Newton is linear with factor
1/2. We show iterations for the pure Newton method, iterations for Accelerated
Newton Method, and the iterations required by the Accelerated Newton Method
in the accelerated phase, after a convergence rate of 1/2 had been detected in the
pure Newton method.

Problem, Starting Point Newton Iters Accel Newton Iters Accel Phase Iters

quarquad,1 16 10 5
affknot1 20 10 7
affknot2 19 10 5
quadknot 18 8 5
munson4 19 12 4
DIS61, 1 19 12 5
DIS64 21 11 7
ne-hard 25 19 5
doubleknot 22 14 5
quad1, 1 15 9 4
quad2, 1 20 13 5

and we denote such x by x∗. Table 3 lists the starting point x0 that was used for
each solution x∗.

1. quarp
f(x) = (1 − x)4

2. aff1

f(x) =

»

x1 + 2x2

x2 − 1

–

3. DIS61 ([1, Example 6.1])

f(x) =

»

(x1 − 1)2

x1 + x2 + x2

2 − 1

–

4. quarquad

f(x) =

»

−(1 − x1)
4 + x2

1 − x2

2

–

5. affknot1

f(x) =

»

x2 − 1
x1

–

6. affknot2

f(x) =

»

x2 − 1
x1 + x2 − 1

–

7. quadknot

f(x) =

»

x2 − 1
x2

1

–

8. munson4 (from MCPLIB [17])

f(x) =

»

−(x2 − 1)2

−(x1 − 1)2

–

9. DIS64 ([1, Example 6.4])

f(x) =

»

−x1 + x2

−x2

–
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Table 3 Starting Point/Solution Pairs. ∗Full solution set is (0, δ) for δ ≥ 1.

Problem, s.p. x0 x∗

quarp, 1 0.1 0
aff1 (0.1, 0.9) (0,1)

DIS61, 2 (0.2, 0.85) (0, (
√

5 − 1)/2)
quarquad, 1 (0.1, 0.9) (0, 1)
affknot1 (0.9, 0.1) (0, 1)∗

affknot2 (0.5, 0.5) (0, 1)
quadknot (0.5, 0.5) (0, 1)∗

munson4 (0, 0) (1, 1)
DIS61, 1 (1.5, -0.5) (1, 0)
DIS64 (2, 4) (0, 0)

ne-hard (10, 1, 10) (0, 0,
√

200)
doubleknot (0.5, 0.5, 0.5, 0.5) (1, 0, 0, 1)
quad1,1 (0.9, -0.1) (1, 0)
quad2,1 (-1, -1) (0, 0)
quad1,2 (0.9, 0.1) (1, 0)
quad2,2 (1, 1) (0, 0)
quarquad, 2 (0.9, 0.1) (1, 0)
quarp, 2 0.9 1
quarn 0.9 1

10. ne-hard (from MCPLIB [17])

f(x) =

2

4

sin x1 + x2

1

x3

2 + x1x3

x2

3 − 200 + x1x2

3

5

11. doubleknot

f(x) =

2

6

4

1 − x1 + x2 + x3

x1 − 1
x4 − 1

1 + x3 − x4

3

7

5

12. quad1

f(x) =

»

x1 − 1
x2

2

–

13. quad2

f(x) =

»

x2

1

x2

–

14. quarn
f(x) = −(1 − x)4
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