
CS/Math 240: Introduction to Discrete Mathematics

Reading 11 : Relations and Functions

Author:  Dieter van Melkebeek (updates by Beck Hasti and Gautam Prakriya)

In reading 3, we described a correspondence between predicates on one variable and sets. A
predicate defines a set, namely the set of all elements of the domain that satisfy the predicate.
Conversely, any set S defines a predicate P (x): x ∈ S. Today we discuss an extension of this
correspondence to predicates on two variables.

11.1 Relations

Consider a predicate P (x, y) where x ∈ D1 and y ∈ D2 (recall that D1 and D2 are called domains).
This predicate defines a (binary) relation. We can think of it as a set of pairs of elements, one from
D1 and one from D2, that satisfy the predicate.

11.1.1 Examples

Example 11.1:

• P (x, y): x is a parent of y

• C(x, y): x is a child of y

• M(x, y): x is the mother of y

• S(x, y): x is the spouse of y
�

Example 11.2: Some more mathematically flavored predicates we have seen are

• x ∈ y: x is an element of y

• x ⊆ y: x is a subset of y

• x < y: x is less than y

• x ≤ y: x is less than or equal to y

• x | y: x divides y

• x ⇐⇒ y: x is logically equivalent to y (in other words, x and y have the same truth table)

• x ≡3 y: x and y have the same remainder after division by 3 (in other words, x and y are
congruent modulo 3).

�

Observe that sometimes both variables of a predicate come from the same domain, and some-
times they come from different domains. For example, both variables in ⊆ are sets. On the other
hand, in the relation ∈, the domain for x is some set S, and the domain for y is the set of all
subsets of S. We could make x and y be from the same domain if we chose the set of all sets as
the domain.
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11.1 Relations 11.1.2 Formal Definition of a Relation

11.1.2 Formal Definition of a Relation

We saw examples of operations that make new sets out of old sets. These operations included
taking intersections, unions, or power sets. In order to define relations formally, we introduce
another operation on sets.

Definition 11.1. The Cartesian product of sets A and B, denoted A × B, is the set of all pairs
of elements a ∈ A and b ∈ B, that is,

A×B = {(a, b) | a ∈ A ∧ b ∈ B}.

The parentheses in the notation (a, b) indicate that order matters. Thus, when we describe
an element of A × B, we always list the element of A first and the element of B second. Two
elements of A × B are the same if and only if both of their components are the same. Formally,
(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

We now define a relation as a subset of the Cartesian product.

Definition 11.2. A relation R between A and B (sometimes from A to B) is a subset of A×B.
We call A the domain of R, and B the codomain of R. If A = B, we say R is a relation on A.

The notation (x, y) ∈ R means that x is related to y by R, and we often denote this by xRy
instead of using the former notation. For example, we say x ⊆ y and x < y, and don’t say (x, y) ∈⊆
or (x, y) ∈<.

11.1.3 Specifying Relations

The examples in this section illustrate multiple ways of describing relations.
We can define a relation by listing all pairs.

Example 11.3: Let A = B = {1, 2, 3, 4, 5, 6, 7}. We define the divisibility relation | between A and
B by listing all its elements. Observe that since |A| = |B| = 7, |A × B| = 49, so the relation |
consists of at most 49 pairs. Therefore, there is some hope that we can list all the elements.

For each possibility for the first component, we list all its multiples in the second component.
This gives us a representation of the relation | as the set {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),
(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6), (7, 7)}. �

We can also represent a relation using a bipartite graph (we will define what a bipartite graph
is later in this course). We list all elements of A one one side and elements of B on the other side.
If aRb, we connect the nodes corresponding to elements a ∈ A and b ∈ B with an edge.

Example 11.4: Figure 11.1a is a graphical representation of the divisibility relation from Example
11.3. For example, 1 divides every integer, so the node labeled 1 on the left side is connected to
all nodes on the right side. In general, a node labeled x on the left side is connected to nodes
representing multiples of x on the right side. �

If a relation, such as the one from Example 11.3, is defined on a set A, we can represent it using
a graph that has just one vertex set. This introduces an ambiguity because if we connect vertices
a and b with an edge, this edge does not tell us whether aRb or bRa. Thus, to disambiguate, we
use directed edges, where the arrow points at b if aRb, and there will be two edges, one going from
a to b, and one going from b to a if both aRb and bRa. Such a graph is called a directed graph, or
simply a digraph. A digraph representing the divisibility relation from Example 11.3 is in Figure
11.1b.
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Figure 11.1: Representing the divisibility relation of Example 11.3.

Example 11.5: Congruence modulo 3 (≡3) is a relation on A = {1, 2, 3, 4, 5, 6, 7}. The set represent-
ing this relation is {(1, 1), (1, 4), (1, 7), (2, 2), (2, 5), (3, 3), (3, 6), (4, 1), (4, 4), (4, 7), (5, 2), (5, 5), (6, 3),
(6, 6), (7, 1), (7, 4), (7, 7)}.

Note that since pairs are ordered, we need to list both (1, 7) and (7, 1) in the enumeration of all
elements of ≡3. We also remark here that congruence modulo 3 is an equivalence relation. We’ll
say more about equivalence relations in the next lecture.

Figure 11.2 shows a directed graph representing the relation ≡3. �
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Figure 11.2: A directed graph representing the relation ≡3.

11.2 Types of Relations

There are many special types of relations that deserve closer attention. These include

• Functions
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• Equivalence relations

• Order relations

We will discuss them in more detail today and in the next lecture.

11.2.1 Functions

You are probably familiar with the concept of a function. Functions turn out to be special cases of
relations.

Definition 11.3. A function f from A to B is a relation R from A to B where for every a ∈ A
there is at most one b ∈ B such that aRb. We say a function is total if for every a ∈ A there is
one b ∈ B such that aRb.

We use the notation f : A→ B to denote that f is a function from A to B, and write f(a) to
denote the the unique b ∈ B (if any) such that aRb. We also say b is the image of a under f .

We also mention the notion of an inverse of a relation. Among other things, it is used to describe
some properties of relations. You may be familiar with the notion of an inverse function. Unlike
inverse functions, inverse relations always exist.

Definition 11.4. The inverse relation of R from A to B, denoted R−1, is a relation from B to A
such that for all a ∈ A and b ∈ B, aRb ⇐⇒ bR−1a.

Example 11.6: Let’s consider the relations from Example 11.1 and see if they are functions.
P (x, y) is not a function. For a fixed x, there is not necessarily a unique y such that P (x, y)

holds. Person x can be a parent of multiple children.
C(x, y) is also not a function. A child has two parents.
M(x, y) is not a function because a person can be the mother of multiple children; however,

the inverse relation is a function. The predicate M−1(y, x) says “y has x as a mother”, and every
person has exactly one mother. Thus, M−1 is a total function.

S(x, y) is a function because a person has only one spouse. The function isn’t total because
some people are not married. �

Below we describe some important kinds of functions:

Definition 11.5. A function f is one-to-one if its inverse relation f−1 is a function. We also say
f is injective.

Observe that f is injective if and only if (∀a1, a2 ∈ A) (f(a1) = f(a2))⇒ (a1 = a2).

Definition 11.6. A function f is onto if for every b ∈ B, there is some a ∈ A such that f(a) = b.
We also say f is surjective.

Definition 11.7. A function that is injective and surjective is called bijective.

Suppose f is an injective total function. Then every element of A maps to a different element
of B, and for this to be possible, there must be at least one different element of B for each element
of A. Hence, |A| ≤ |B|. We don’t get equality because there could be some elements b ∈ B that
are not related to any a ∈ A. Also note that we can have |A| > |B| if f is injective but not total.

If f is a surjective function, we have |A| ≥ |B|. This does not require f to be total.
If f is a bijective total function, then |A| = |B|.
We can use the observations about injective, surjective, and bijective functions to compare

cardinalities of sets. For example, if we can find a total function from A to B and prove that it is
injective, we also get a proof that |A| ≤ |B|.
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11.2.2 Relations on a Set A

We have seen many examples of relations where the domain and the codomain are equal. We now
introduce some properties such relations can have. We use some of the relations from Example 11.2
to give examples of relations with those properties. A summary of relations and their properties is
in Table 11.1 at the end of this section.

Definition 11.8. A relation R on set A is reflexive if (∀a ∈ A) aRa. It is antireflexive if
(∀a ∈ A) ¬aRa.

Example 11.7: Any set is a subset of itself, so ⊆ is reflexive.
The relation < is not reflexive. No number can be less than itself, so < is actually antireflexive.

On the other hand, ≤ is reflexive because every number is equal to itself, so it is less than or equal
to itself.

Every positive number divides itself, so we list | as being reflexive in Table 11.1. Note, however,
that if the domain were all integers, then | would not be reflexive because zero does not divide any
integer, and, in particular, does not divide itself.

A propositional formula has the same truth table as itself, and an integer has the same remainder
after dividing by 3 as itself, so both ⇐⇒ and ≡3 are reflexive. �

Definition 11.9. A relation R on set A is symmetric if (∀a, b ∈ A) aRb ⇐⇒ bRa. It is
antisymmetric if (∀a, b ∈ A) (aRb ∧ bRa)⇒ (a = b).

Example 11.8: The relation ⊆ is not symmetric. For example, N ⊆ Z, but the other containment
doesn’t hold. If fact, whenever A ⊆ B and A 6= B, we have B 6⊆ A. Also note that if A ⊆ B and
B ⊆ A, then A = B, so ⊆ is actually antisymmetric. The relations ≤ and | are antisymmetric by
a similar argument.

The relation < is also not symmetric. In fact, it is as non-symmetric as it can be. Observe that
a < b implies b is not less than a, so it does not happen for any pair a 6= b that both a < b and
b < a. Thus, < is antisymmetric.

The relations ⇐⇒ and ≡3 are symmetric. Every relation that can be characterized by “a and
b have the same . . . ” is symmetric. �

Definition 11.10. A relation R on set A is transitive if (∀a, b, c ∈ A) (aRb ∧ bRc)⇒ aRc.

Example 11.9: All the relations ⊆, <, ≤, |, ⇐⇒ and ≡3 are easily seen to be transitive. The only
one that is a little less obvious is divisibility, and for that just observe that if a | b and b | c, there
exist k and l such that b = ka and c = lb, so c = lb = lka, which means a divides c. �

Finally, we summarize all our findings in Table 11.1.

relation reflexive symmetric transitive

⊆ yes anti yes
< anti anti yes
≤ yes anti yes
| yes anti yes
⇐⇒ yes yes yes
≡3 yes yes yes

Table 11.1: Properties of some relations from Example 11.2.
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11.2.3 Equivalence Relations

Definition 11.11. A relation R on set A is an equivalence relation if it is reflexive, symmetric,
and transitive.

Example 11.10: From the relations in Table 11.1, only ⇐⇒ and ≡3 are equivalence relations.
None of the other relations are symmetric, so they are not equivalence relations either. This may
lead you to believe that every symmetric relation is an equivalence relation; however, this is not
true. For example 6= is symmetric, but it is not an equivalence relation because it is neither reflexive
nor transitive. �

An equivalence relation on A divides the elements of A into clusters of mutually related el-
ements, and where no two elements of different clusters are related. This gives an alternative
characterization of equivalence relations, which we explore next.

Definition 11.12. A partition of A is a collection of subsets A1, A2, . . . of A such that
⋃

iAi = A
and Ai ∩Aj = ∅ whenever i 6= j.

In Definition 11.12, we could also say that the sets A1, A2, . . . are pairwise disjoint. We call the
individual sets Ai clusters, partition classes, or equivalence classes.

We will now show that a partition of A induces an equivalence relation on A, and an equivalence
relation on A induces a partition of A. Let’s start with an example.

Example 11.11: Consider the set A = {1, 2, 3, 4, 5, 6, 7}. The subsets A1 = {1, 4, 7}, A2 = {2, 5}
and A3 = {3, 6} are a partition of A.

Observe that a ≡3 b implies a and b are in the same partition class. This is what we have in
mind when we say that the partition of A into A1, A2 and A3 is induced by the equivalence relation
≡3 on A. �

Now we describe the correspondence between partitions of A and equivalence relations on A
formally.

Proposition 11.13. Given a partition A1, A2, . . . of A, define R such that aRb if and only if a
and b belong to the same partition class Ai. Then R is an equivalence relation.

Proof. First note that a belongs to the same partition class as itself, so R is reflexive. If a belongs to
the same partition class as b, then b belongs to the same partition class as a too, so R is symmetric.
Finally, if a is in the same partition class as b and b is in the same partition class as c, then a is in
the same partition class as c, so R is also transitive. It follows that R is an equivalence relation.

Proposition 11.14. Let R be an equivalence relation on a set A. For each a ∈ A, define the set
[a] = {b ∈ A | aRb}. The collection P = {[a] | a ∈ A} is a partition of A.

In Proposition 11.14, we call [a] the equivalence class of a. By saying “collection of sets [a]” we
mean that we drop duplicates.

There is no reason to believe that the various equivalence classes [a] don’t overlap in all sorts of
arbitrary ways. Let’s start with an example to give ourselves some confidence that the equivalence
classes overlap in a very structured way.

Example 11.12: Consider the congruence modulo 3 (≡3) relation on A = {1, 2, 3, 4, 5, 6, 7}. The
equivalence classes are:
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[1] = {1, 4, 7}
[2] = {2, 5}
[3] = {3, 6}
[4] = {1, 4, 7} = [1]
[5] = {2, 5} = [2]
[6] = {3, 6} = [3]
[7] = {1, 4, 7} = [1] �

We make the following observations about Example 11.12.

Observation 11.15. Let R be an equivalence relation on A. Then the following are true.

(i) (∀a ∈ A) a ∈ [a]

(ii) (∀a, b ∈ A) aRb⇒ ([a] = [b])

(iii) (∀a, b ∈ A) ¬aRb⇒ ([a] ∩ [b] = ∅)

Observation 11.15 is actually true in general. Before we prove it, let’s see how it helps us in
proving Proposition 11.14.

Proof of Proposition 11.14. Part (i) of Observation 11.15 tells us that the union of all equivalence
classes [a],

⋃
a∈A[a], is all of A.

Parts (ii) and (iii) of Observation 11.15 tell us that two equivalence classes don’t overlap in an
“arbitrary way”. Suppose a, b ∈ A. There are two cases to consider.

Case 1: aRb. In this case, [a] = [b] by part (ii) of Observation 11.15. Since P is a set, [a] and
[b] are actually the same element of P , and not two different elements of P that have a nonempty
intersection. Thus, a and b don’t make P violate the definition of a partition.

Case 2: ¬aRb. In this case [a] ∩ [b] = ∅, so a and b such that ¬aRb also cannot cause P to
violate the definition of a partition.

Proof of Observation 11.15. Since R is reflexive, aRa, so a ∈ [a]. This proves part (i).
Let aRb and pick x ∈ [a]. Then aRx by definition of [a]. Since R is symmetric, we have bRa.

Now we have bRa and aRx, so bRx because R is transitive. It follows that x ∈ [b], and [a] ⊆ [b].
Now switch the roles of a and b in this argument to get [b] ⊆ [a] and [a] = [b]. This proves part (ii).

We conclude the proof by proving the contrapositive of part (iii). That is, if [a] ∩ [b] 6= ∅, then
aRb. If [a]∩ [b] 6= ∅, there is some x ∈ A such that x ∈ [a] and x ∈ [b]. Hence, aRx and bRx. Since
R is symmetric, xRb as well. Now we have aRx and xRb, so aRb. This completes the proof.

We conclude our discussion of equivalence relations with a remark about equivalence classes for
the equivalence relations from Example 11.10.

We have only discussed ≡3 on the domain A = {1, 2, 3, 4, 5, 6, 7}. It turns out that we can
extend this relation to all of Z and get the following equivalence classes.

[1] = {x ∈ Z | The remainder of x after division by 3 is 1
[2] = {x ∈ Z | The remainder of x after division by 3 is 2
[3] = {x ∈ Z | The remainder of x after division by 3 is 0

The equivalence classes for logical equivalence ( ⇐⇒ ) are the sets of propositional formulas
whose truth tables are the same.

7



11.2 Types of Relations 11.2.4 Order Relations

11.2.4 Order Relations

Definition 11.16. A relation on a set A is an order relation if it is antisymmetric and transitive.
An order relation is a strict order relation if it is antireflexive. An order relation is a total order
relation (usually shorthanded as total order) if (∀a, b ∈ A) x 6= y ⇒ (xRy ∨ yRx).

Example 11.13: We deduce from Table 11.1 that ⊆, <, ≤, and | are order relations. The relation
< is also strict, whereas ≤ and | are not strict. The relations < and ≤ are total orders. To show
that ⊆ is not a total order, pick X = {1, 2} and Y = {2, 3}, and observe that X 6⊆ Y and Y 6⊆ X.
For the divisibility relation, notice that 3 - 7 and 7 - 3, which shows that | is not a total order. �

While an order relation R need not be a total order, one can construct another order relation
R̃ that is a total order and that satisfies xRy ⇒ xR̃y. If R̃ is as such, we say R̃ is an extension of
R. We do not prove this now, and only give an example. We will prove a more general result when
we talk about directed graphs.

Example 11.14: We can extend the divisibility relation | on positive integers to ≤ which is a total
order. Observe that if a | b, then also a ≤ b, so ≤ is indeed an extension of |. There are other
extensions of | to total orders, but the one we gave is quite natural. �

11.2.5 k-ary Relations

So far we have only talked about binary relations. There are also k-ary relations which generalize
the notion of a binary relation. Just like a binary relation is a subset of the Cartesian product of 2
sets, a k-ary relation is a subset of the Cartesian product of k sets. In other words, a k-ary relation
is a collection of k-tuples. These come up for example in relational databases.

Note that if k = 2, we get the notion of a relation we’ve been discussing today and last time.
For k = 1, we get regular sets.

Example 11.15: The set {(x, y, z) | x2 + y2 + z2 = 1} is a ternary (3-ary) relation on R3. It is the
set of points on a sphere of radius 1 centered at the origin. �

For the rest of this course, we will only consider binary relations.
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