
ARRAYS
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 11

By Matthew Bernstein – matthewb@cs.wisc.edu

Introduction To Arrays
•  Let’s say we need to store a bunch of values (say thousands)

of the same type. For example, we want to read a long
sequence of numbers and then perform some analysis on
these numbers (max, min, average, mode, etc.)

•  How do we this?
•  Well, we could store each of the values in a variable:

 double val_1;
 double val_2;
 ….
 double val_1000;

•  However, this is a horrible solution…it doesn’t scale

Introduction to Arrays
• We use arrays to store many values
• Arrays are a fundamental object in java
•  The following code creates an array called “values” with

room to store 10 doubles:

 double[] values = new double[10];

The name of our
variable is “values”

The data type
is an array that
stores doubles The “new” operator

creates the array
by allocating the
space in memory

We specify that
want the array to
hold 10 values

Alternative Ways of Creating Arrays
• We can also create an array with initial values:

 double[] values = {32, 3, 355, 9.564, 2.49};

• When we create an array this way, we don’t need the
“new” operator. The compiler automatically counts
the number of values in the curly braces.

This creates an array
that stores 5 values.
These values are initialized
here.

Accessing Values in Arrays
•  Let’s say we create the following array:

 String[] names = {“Bob”, “Lindsey”, “Taylor”};

• We can access the ith value as follows:

 names[i];

•  The following example gets the 0th value (the first value in
the array):

 String firstName = names[0]; // firstName = “Bob”

Assigning Values in Arrays
• Similarly we can assign the value at a specific
index of an array:

 String[] names = new String[3];
 names[0] = “Bob”;
 names[1] = “Lindsey”;
 names[2] = “Taylor”;

Trying to Access Array at Invalid Index
•  This is a common run-time error that will cause your

program to crash with a bounds error.
•  For example you create an array with 3 values:

 String[] names = {“Bob”, “Lindsey”, “Taylor”};

• And you try to access the 4th value (index 3):

 names[3]

Another Common Error
• Your declaration and initialization must be
consistent.

• The following example is WRONG:

 double[] data = new int[10];

Arrays – Their Lengths are Fixed
• Array’s lengths are FIXED
• Let’s say you create an array that can store 10
values and you would like to allow your array to
grow to store more values…unfortunately you
cannot do this

•  In order to “grow” an array, you would have to
create a new, larger array and copy all elements
from your previous array to this new array (We
will show how to do this later)

The “.length” Field
• We can find the length of an array by
accessing the array’s “length” field

• Example:
 int[] arr = new int[10];
 int x = arr.length; // This is 10

Array Variables are References
• When you declare an array variable, the variable itself

does not store any values. Rather, the variable points to
the location in memory where the values are stored:

 int[] values = {1, 2, 3, 4, 5};

values

Int[]
1
2
3
4
5

Copying Array Variables
•  If we assign an array variable to another array variable,

we are actually assigning the reference from the first
variable to the second:

 int [] values = {1, 2, 3, 4, 5}
 int [] scores = values;

values
Int[]

1
2
3
4
5

scores

Example
• What will the following code print to the console?

 int[] values = {1, 2, 3, 4, 5};

 int[] scores = values;

 values[3] = 6;

 System.out.println(scores[3]);

Partially Filled Arrays
• Remember we cannot change the size of an
array after it is initialized. However, what if we
don’t know how large to make our array when
we initialize it?

• We can create a large array (larger than we
think we’ll need) and partially fill this array

• However, we’ll need to keep track of how full
the array is at any point. Thus, we keep a
companion variable that tells us how full it is.

Partially Filled Arrays - Example
•  Partially Filling an array:

 Scanner in = new Scanner(System.in);

 double[] values = new double[1000];
 int currentSize = 0;
 while (in.hasNextDouble())
 {
 if (currentSize < values.length)
 {
 values[currentSize] = in.nextDouble();
 currentSize++;
 }
 }

Processing a Partially Filled Array
•  Instead of iterating over the entire array, we iterate only

over the part of the array that is filled:

 for (int i = 0; i < currentSize; i++)
 {
 System.out.println(values[i]);
 }

The Enhanced “for” Loop
•  As we’ve seen, it is common that we will need to process all of

the contents of an array. To do this, we used the following:

 for (int i = 0; i < values.length; i++)
 {
 // Process values[i]
 }

•  The Enhanced “for” loop provides an easier way of doing this:

 for (double element : values)
 {
 // Process each element of values
 }

The Enhanced “for” Loop
• How it works:

 for (type variable_name : array_variable)

The type of elements
stored in the array
we are processing

The name of the
variable we use to store
each element of values

A colon is needed
here

The array on which
we are iterating over

Example

 double[] values = {1.0, 2.0, 3.0, 4.0, 5.0};

 for (double v : values)
 {
 System.out.println(v);
 }

Programming Exercise
• Write a program that allows a user to enter a
sequence of integers. The program should
prompt the user for the number of integers the
user will input and then will allow the user to
input exactly that many values.

• The program should store these values in an
array

• The program should then process the array
and compute the mean, median, and mode.

Calculating Median
• We need to sort our array
• How do we do this?
• We need a sorting algorithm:

• There are several algorithms for sorting a list
which you will cover in data structure and
algorithms courses.

• We will cover the most basic algorithm:
Bubble Sort

Calculate Mode
• Do this on your own as a programming
exercise

• Idea
• Iterate through our array. Keep a count for
the element with the highest number of
appearances.

Cool CS Link of the Day
• Karl Sim’s Evolved Creatures: Using a super-computer to

simulate evolution
•  http://www.youtube.com/watch?v=JBgG_VSP7f8

