# 2-DIMENSIONAL ARRAYS 

CS302 - Introduction to Programming University of Wisconsin - Madison Lecture 14

By Matthew Bernstein - matthewb@cs.wisc.edu

## Two-Dimensional Arrays

- We talked about how we can store multiple values of a single type in an array, where each value is stored at a unique index of the array
- We have stored Strings, doubles, and ints
-Can we store arrays in an array? Yes!


## 2-Dimensional Arrays

- An array that stores arrays is called a 2-Dimensional Array
- In mathematics this is called a Matrix:
$\left[\begin{array}{rrrr}1 & 5 & 10 & 5 \\ 6 & 4 & 12 & 4 \\ 10 & 5 & 12 & 11 \\ 5 & 11 & 23 & 9\end{array}\right]$


## Initializing an empty 2D Array

The following code creates an empty $4 \times 3$ array. That is, it has 4 arrays where each array holds 3 doubles
double[][] matrix = new double[4][3];


Number of array elements (the number of rows)

Number of elements per array (the number of columns)

Creates:

```
{
    {0.0, 0.0, 0.0},
    {0.0, 0.0, 0.0},
    {0.0, 0.0, 0.0},
    {0.0, 0.0, 0.0}
}
```


## Initializing a 2D Array with values



## Accessing Elements

- Given the following array: int[][] matrix $=$ \{

$$
\begin{array}{r}
\{16,3,2,13\}, \\
\{5,10,11,8\}, \\
\{9,6,7,12\}, \\
\{4,15,14,1\}
\end{array}
$$

- We can access the element at the ith row and jth column as follows:
int someVariable = matrix[0][2]; // "someVariable" will equal 2


## Accessing Elements

- We can also access entire array elements
- Given the following array:

$$
\begin{array}{ll}
\operatorname{int}[][] \text { matrix }=\{ & \\
& \begin{array}{l}
\{16,3,2,13\} \\
\\
\\
\\
\\
\\
\end{array} \quad\{9,10,11,8\}, \\
& \{4,15,14,12\},
\end{array},
$$

- We can access the $i^{\text {th }}$ array as follows (this gives us the entire $i^{\text {th }}$ row of the matrix):
int[] someArray = matrix[1]; // Will grab \{5, 10, 11, 8\}


## Programming Exercise

- Given the following array:
int[][] matrix $=\{$

$$
\begin{aligned}
\{16,3,2,13\} \\
\{5,10,11,8\} \\
\{9,6,7,12\}, \\
\{4,15,14,1\}
\end{aligned},
$$

- Get the $2^{\text {nd }}$ column of the matrix and store it as an array


## Programming Exercise - Matrix Multiplication

- Given two matrices, $A$ and $B$, where the number of rows of $A$ is equal to the number of columns of $B$, write a program that produces the result of multiplying $A$ and $B$.
- Example:

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

## More Dimensions

- We can actually make an array as many dimensions as want!
- The following code creates an empty $7 \times 4 \times 3$ array: int[][][] multiDimensions = new int[7][4][3];
- You can think of this as an array that stores 7 2D arrays, where each 2D array stores 4 regular arrays, where each regular arrays stores 3 ints.


## Cool CS Link of the Day

- A look at Google's self-driving car
- http://www.youtube.com/watch?v=cdgQpa1pUUE


