
METHODS
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 15

By Matthew Bernstein – matthewb@cs.wisc.edu

Introducing Methods as Black Boxes
•  A method is a section of code that carries out a particular task

(example: add two numbers, sort a list, etc.)
•  We can think of a method as a black box, that takes in some

arguments, and returns a result

Arguments Return value

Method

Example of a Method
• Remember the Math.pow() method. It accepts two
numbers as its arguments:
• The first number is a value we want to raise to a

certain power
• The second number is the power we want to raise

our value to
• Example:

 Math.pow(2, 3); // Computes 23 which equals 8

Math.pow() as a Black Box

 Math.pow(2, 3);

Arguments

Return value

Math.pow()
2

3 8

Defining Methods (i.e. Defining the Black
Box)
• As a programmer using some method, you don’t
need to know what’s going on inside the black
box. All you need to know is three pieces of
information:
• The method’s name
• The method’s parameters (i.e. what
arguments it accepts)

• The type of data that the method returns
• So when we build our own methods, we have to
define these pieces of information for our method,
and then implement the black box

Defining Methods

public static int addTwoInts(int valA, int valB)
{

 int sum = valA+ valB;
 return sum;

}

public static int addTwoInts(int valA, int valB)
{

 int sum = valA+ valB;
 return sum;

}
Here, we return execution
to the code that called the
method. The caller also
gets the value in the “sum”
variable.

don’t worry about what
“public” and “static” mean.
Just know that, for now,
all of our methods will be
preceded by these two
reserved words.

Let’s Break it Down
The data type being
returned by the method

The method’s
name is
“addTwoInts”

The two parameters to
this method are two int
values which are set to
the variables “valA” and
“valB”

The Black Box Again

Arguments

Return
value

public static int addTwoInts(int valA, int valB)
{

 int sum = valA+ valB;
 return sum;

}

Class Examples
-- Let’s go through examples of implementing
methods--

Vocabulary
•  The line that you use to declare your method is called the

method’s header.
•  The variables that a method creates when it is called and

executed are called parameters
•  The values passed to a method (that are stored in the

method’s parameters) are called arguments

public static int addTwoInts(int valA, int valB)
{

 …
}

Header Parameters

Naming Methods
• Methods are named using camel case
• The name should describe the task they do
• Examples:

 printArray
 computeRadius
 findSurfaceBoundary

The return statement
•  So far, we’ve seen examples where we return a variable from a

method.

•  If we have a method called:

 public static double calculateMean(double[] values)
 {
 …
 return result;
 }

•  The code that called the method will be able to assign the value of the

returned variable:

 double[] myValues = {3.24, 4.5, 13.5};
 double mean = calculateMean(myValues);

A return statement can return an
expression
• A return statement need not return a variable. It can also

return the result of an expression provided this result is of
the data type this method is supposed to return:

 public static double valueCubed(double value)
 {
 return sideLength * sideLength * sideLength;
 }

Multiple return statements
•  We can write a method with multiple return statements as long as

are sure that every path of execution will lead to a return
statement:

 public static double cubeVolume(double sideLength)
 {

 if (sidelength >= 0)
 {
 return sideLength * sideLength * sideLength;
 }
 else
 {
 return 0;
 }

 }

Avoiding Multiple Return Statements
• Some programmers dislike the use of multiple
return statements. You can avoid multiple return
statements by storing the method result in a
variable that you return in the last statement

Avoiding Multiple Return Statements
 public static double cubeVolume(double sideLength)
 {

 double volume;

 if (sidelength >= 0)
 {
 volume = sideLength * sideLength * sideLength;
 }
 else
 {
 volume = 0;
 }

 return volume;

 }

Common Errors
• Your program will get a compile time error if
you make any of the following mistakes:
• Your method is supposed to return a value, but
you do not have a return statement.

• Your method returns a different data type than
what is specified in the method’s signature.

•  If your method is supposed to return a value,
but not all paths of execution lead to a return
statement

Methods Without Return Values
• Not all methods need to have a return value
•  If you would like to define a method without a return value,

then you must precede the method name with the data
type void

 public static void printArray(double[] values)
 {
 for (double val : values)
 {
 System.out.print(val + “ “);
 }
 }

Scope
• Each variable has a scope that defines what parts of
your program have access to that variable

• Variables declared inside of a method have scope
within that method only. You cannot access such a
variable from a different method

• Variables whose scope consists of an entire method
are called local variables

• Variables declared inside of a code block (specified
by curly brackets), that variable can only be accessed
inside of that that block.

• Examples of code blocks include loops

public static int numValuesGreaterThan(double[] array, double value)
{

 int count = 0; // count is a local variable and can only be
 // inside this method accessed
 for (double element: array)
 {
 // element’s scope is inside this loop. It cannot be
 // accessed outside of this loop
 if (element > value)
 {
 count++;
 }
 }
 return count;

}

More Details on Scope
• You can have two variables of the same name
and data type as long as their scope’s do not
overlap

• -- See in-class example --

Examples Using Methods
• Let’s make our MeanMedianMode program
more modular using methods

• Let’s create a method for getting user input in
order to reduce redundant code in our
SheepMaster program

Example

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4
 at MeanMedianMode_Methods.bubbleSort(MeanMedianMode_Methods.java:168)
 at MeanMedianMode_Methods.calculateMedian(MeanMedianMode_Methods.java:118)
 at MeanMedianMode_Methods.main(MeanMedianMode_Methods.java:31)

•  Let’s break our Bubble Sort method in our
MeanMedianMode.java program.

 What does the output look like?

We see the trace of method
calls that led to the failure in
the bubbleSort method.

Method Stubs
• From Horstmann page 224:
• When writing large programs, it is not always
feasible to implement and test all methods at
once. You often need to test a method that
calls another, but the other method hasn’t yet
been implemented. You can temporarily
replace the missing method with a stub.

• A stub is a method that returns a simple value
that is sufficient for testing another method.

Example of a method stub
/**
* Turns a digit into its English name.
* @param digit an integer between 1 and 9
* @return the name of digit (“one”,….,”nine”)
*/
public static String digitName(int digit)
{

 return “mumble”
}

Javadocs
•  In Eclipse, the blue comments are used for
generating Javadocs.

• Javadocs are sort of like an instruction manual for
using your code.

• You create a bunch of .html files which you can use
in a website

• Those blue comments you see in Eclipse are what
the Javadoc tool uses to generate the documents

• You should only use these blue comments if you
want the text inside to be translated to Javadocs

See this website for more information:

• http://www.oracle.com/technetwork/java/
javase/documentation/index-jsp-135444.html

Example of Javadocs

Cool CS Link of the Day
• How Pseudorandom Number generators work:
•  http://www.youtube.com/watch?v=itaMNuWLzJo

