
INTRODUCTION TO 
OBJECT ORIENTED 
PROGRAMMING (OOP) 
CS302 – Introduction to Programming 
University of Wisconsin – Madison 
Lecture 18 
 
By Matthew Bernstein – matthewb@cs.wisc.edu 
 



Purpose of Object Oriented Programming 

• You have learned how to structure your 
programs by decomposing your tasks into 
methods 

• This has made your code more modular and 
increases code re-use 

• Object Oriented Programming (OOP) is a 
style of programming which further 
decomposes your code into discrete 
interacting objects 



We Have Already Used Objects 
• We already have some exposure to objects 
• Examples: 

 // Create a new Scanner object 
 Scanner scan = new Scanner(System.in); 

 
 // Create a new Random object 
 Random rand = new Random(); 

 
 // Create a new String object 
 String str = “Hi”; 



Advantages 
• By interacting with discrete objects, we don’t 
need to deal with the underlying complexity 
within the objects 

• For example, when retrieving user input from 
the keyboard, we do not have to interact with 
the hardware and deal with all of the event 
handling necessary to retrieve user input from 
the keyboard.  Instead, we just have to create 
a Scanner object that does all of that for us. 

• This design paradigm is called encapsulation 



Philosophy of OOP 
• Object Oriented Programming is based on the idea of 

instantiating objects that are of a certain class 
• A class describes a set of objects that have the same 

behavior 
•  For example, all objects of the Scanner class all behave 

the same way 
•  In the following code: 

   Scanner scan = new Scanner(System.in); 
 
  The scan object is an instantiation of the Scanner class 



Conceptual Example of Objects and 
Classes 
•  For example, let’s say we implement a class called 

“Vehicle” 
• We can create new objects of class Vehicle 
• Hypothetical example: 

   Vehicle myCar; 
   Vehicle momsCar; 

 
• Both myCar and momsCar are different objects of the 

class Vehicle 



A Class Defines Each Object’s Interface 
• Each object has a public interface that consists 
of all methods and variables that are accessible 
to the user of this object 

• This interface is defined by the object’s class 
• For example, the Scanner’s public interface 
includes the methods nextInt(), hasNextInt(), 
nextLine(), etc. 

• Where are these methods defined?  In the 
Scanner class 

• Thus, all instantiations of the Scanner class 
have these methods available to the user  



Implementing a Simple Class 
• Each class we write for now must be 
placed into a .java file of the same name as 
the class 

• Let’s create a class called Car that has just 
one instance variable and two public 
methods 



Car Class 
class Car 
{ 

 // Instance variable 
 public int milage; 

 
 // Public method can be accessed by the user of this class 
 public void drive(int miles) 
 { 
  milage += miles; 
 } 

 
 // Public method can be accessed by the user of this class 
 public int getMilage() 
 { 
  return milage; 
 } 

} 



Instance Variables 
• An object stores its data in instance 
variables 

• These are also called fields 
• An instance variable is a storage location that 
is present in each object of the class 

• The value of one object’s instance variables 
may be different from the values of another 
object’s variables even though they are of the 
same class 



Instance Variables 
•  Instance variables are written inside of the class’s code 

block outside of any method 
•  Following standard convention, all instance variables 

should be declared at the top of the class 
• Example: 

  class Car 
  { 
   // Instance variables 
   private String make; 
   private String model; 
   private int mileage; 
  } 



Declaring Instance Variables 
• An instance variable declaration takes the 
following form: 

      
   modifier type variable_name; 

• Example: 
    private String name; 



Modifiers 
• An access modifier stipulates whether a 
field or method can be accessed or called 
by the user of the class 

• Fields/methods denoted as private can 
only be accessed by methods within the 
class 

• Fields/methods denoted as public can be 
accessed by methods either within the 
class or outside the class 



Composition: Objects as Instance 
Variables 
• You may have noticed in the example: 

   
  class Car 
  { 
   // Instance variables 
   private String make; 
   private String model; 
   private int mileage; 
  } 

 
That we can use objects as instance variables (String is an 
object).  This is called Composition 
 



Memory Diagram of Objects 

myCar 

Car 
mileage = 100 

make 
model 

“Jeremy” 
“Bartholomew” 

Car myCar = new Car(); 

String 
“Ford” 

String make 
String model 

“Jeremy” 
“Bartholomew” 

String 
“Mustang” 

String make 
String model 

“Jeremy” 
“Bartholomew” 



More on Instance Variables 
• Nearly all of class’s instance variables should 
be private  

• If we think of an object as a machine, the 
instance variables represent the gears.  We 
don’t want to expose the gears to the user of 
the machine. 

• Instead, if we want to allow the user access to 
the instance variables, we provide public 
methods for accessing these instance 
variables. 



Instance Methods 
• Similar to instance variables, objects of the 
same class have the same instance methods 

• Instance methods are method members that 
use the object’s instance variables 

• The code for an object’s instance methods are 
defined in the object’s class 

• An object’s instance methods have access to 
ALL of its instance variables 

 



Instance Method 
 class Car 
 { 
  // Instance variables 
  private String make; 
  private String model; 
  private int mileage; 

 
  // Instance method 
  public void printFullName 
  { 
   System.out.print(make + “ “ + model); 
  } 
 } 



this 
• In order for an object to refer to itself, Java 
provides a reserved word, this, that is a 
reference variable pointing to itself 

• A class’s instance variable can be referenced 
as a field of the this variable 

• The this variable’s primary use is when an 
instance variable is overshadowed by a 
method’s parameter 



When to use this 
•  This is primarily used when an object’s instance variable name 

is overshadowed by a method’s parameter name 
•  Example: 

  class Car 
  { 
   private String make; 

 
   public void setMake(String make) 
   { 
    // We set the instance variable 
    // “make” to the parameter “make” 
    this.make = make; 
   } 
  } 



Cool CS Link of the Day 
• Self Assembling Robots Project at MIT 
•  https://www.youtube.com/watch?v=6aZbJS6LZbs 


