
CONSTRUCTORS 
CS302 – Introduction to Programming 
University of Wisconsin – Madison 
Lecture 19 
 
By Matthew Bernstein – matthewb@cs.wisc.edu 



Constructors  
• A constructor initializes the instance variables of an 

object 
•  The constructor is automatically called when an object is 

created with the new operator 
• Example: 

  
 Scanner scan = new Scanner(System.in); 

scan’s constructor is called 
when it is created with the 
new operator 



Constructors 
•  The name of the constructor MUST be identical to the class name 
•  The constructor MUST NOT define a return type 
•  The constructor MUST be public 
•  Example: 

  class Car 
  { 
   String make; 
   int mileage; 
   
   // constructor 
   public Car() 
   { 
    make = “Ford”; 
    mileage = 0; 
   } 
  } 



Constructor Parameters 
• Constructors can be passed arguments 
• Example: 
 

 Scanner scan = new Scanner(System.in); 

System.in is passed as an 
argument to the constructor 



Defining Constructors 
• Let’s say we want to define the Car’s make and 
model when this object is created.  We can 
define the Car’s constructor such that it accepts 
a String corresponding to the Car’s make and a 
String corresponding to its model. 

 
 

   



Constructor Example 
 class Car 
 { 
  // Instance variables 
  private String make; 
  private String model; 
  private int mileage; 

 
  // This constructor initiliazes the make and model 
  // to its parameter values 
  public Car(String k, String d) 
  { 
   make = k; 
   model = d; 
  } 
 } 



Deciding Constructor Parameters 
• How do we decide which instance variables we 
will initialize in a class’s constructor and which we 
will leave as the default value? 

•  In general, if an object requires some instance 
variable to be set to a specific value before the 
user uses this object, then you should initialize it 
in the constructor 

• For example, the Scanner object needs to know 
where the input is coming from.  We supply it with 
System.in so that our Scanner object knows to 
read data from the keyboard. 

 



Deciding Constructor Parameters 
• In general, deciding which instance variables 
should be initialized in the constructor is a 
design choice 

• The best practice is to make sure that the 
user’s program won’t crash when she calls 
any of the object’s methods simply because 
the object was not initialized correctly 



Constructors are different from Methods 

• Constructors are similar to methods in that they 
correspond to a segment of code that is executed 
when called, but DO NOT think of them as 
methods 

• An object’s constructor is called only once (when 
the object is created) and can never be called 
again 

• You cannot call an object’s constructor.  It is only 
called when the object is created 



Constructor Overloading 
• You can define multiple constructors for your 
class 

• This is called constructor overloading 
• The constructor that is called when the object 
is created will depend on the arguments you 
pass to the constructor 

 



Constructor Overloading Example 
  class Car 
  { 
   private String make; 
   private String model; 
   private double originalPrice; 

 
   // First Constructor 
   public Car(double op) 
   { 
    originalPrice = op; 
   } 

 
   // Second Constructor 
   public Car(String k, String d) 
   { 
    make = k 
    model = m 
   } 
  }   



Calling Either Constructor 
•  Now when we create an instance of Car, we can either 

instantiate it with the first constructor or the second constructor: 

•  Either: 
 double price = 23000; 

 
 // First constructor 
 Car carA = new Car( price );  

•  Or 
 String make = “Ford”; 
 String model = “Mustang”; 

 
 // Second constructor 
 Car carA = new Car(make, model);  



Default Constructor 
•  If we do not define a constructor for our class, a 
constructor is still called.  It looks like this: 

 
   public Car()  
   { } 

 
• This is called the default constructor.  It is called 
when you do not explicitly define a constructor.  

• When you define a constructor, the default 
constructor is “overwritten” 



Common Design Practice: Using this to 
call a primary constructor 

• If we define multiple constructors, it is good 
design practice to make one of these 
constructors the “primary” constructor 

• We then make a call the “primary” constructor 
from the “non-primary” constructor using the 
this reserved word 



Example 
class Car 
{ 

 private String make; 
 private String model; 
 private double originalPrice; 

 
 // The “primary” constructor 
 public Car(String make, String model, double originalPrice) 
 { 
  this.make = make; 
  this.model = model; 
  this.originalPrice = originalPrice; 
 } 

 
 // Other constructors then call the primary the constructor 
 public Car(double originalPrice) 
 { 
  this(null, null originalPrice); 
 } 
  
 // This correlates to the default constructor 
 public Car() 
 { 
  this(null, null, 0); 
 } 

} 



Cool Link 
• What is Information Theory? 
•  http://www.youtube.com/watch?

v=p0ASFxKS9sg&list=SPbg3ZX2pWlgKDVFNwn9B63Uh
YJVIerzHL 


