
TOSTRING, EQUALS,
HASHCODE
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 23

By Matthew Bernstein – matthewb@cs.wisc.edu

toString method
• In Java, each object inherits (“has by default”)
a toString method

• toString returns a String representation of the
object

• You should define the toString method such
that the String is meaningful

• By default, this method will return the object’s
Hash Code

Override the toString method

 @Override
 public String toString()
 {
 // Return a String that represents
 // the current object
 }

 -- See in class example --

You need this ‘@Override’. You will
learn about this notation in more detail
later

Example
• You can now simply print the object itself:

 Car carA = new Car(“Ford”, Mustang”);
 System.out.println(carA);

• Your object’s toString method is called by
default whenever your object is treated like a
String

hashCode method
• An object’s hash code is an integer that is “like” its

address in memory
• Each object’s hash code maps to a memory address
• You can retrieve an object’s hash code using its

hashCode() method
• Example:

 Car carA = new Car();

 // Get the car’s hash code
 int code = carA.hashCode();

equals method
• Each object inherits a method called equals() that
compares two objects

•  If they are equal it returns true. If they are not
equal it returns false

• What do we mean by equal?
• By default, the equals method compares the value
returned by each method’s hashCode() method

• Thus, by default, two objects are equal only if they
share the same location in memory (i.e. they are
the same object)

Example of equals

Car carA = new Car(“Volkswagen”, “Beetle”);
Car carB = carA;

// This would return true
boolean isEqual = carA.equals(carB);

Compare carA with carB

Both carA and carB reference
the same Car object

Overriding the equals method
 @Override
 public boolean equals(Object o)
 {
 if (! o instanceof Car.class)
 {
 return false;
 }

 if (((Car) o).getPrice() == this.price)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Cast the object
parameter
as a Car object

This method returns true
whenever the two Car
objects being compared
have the same price

Overriding the equals method
• You overwrite the equals method so that you
can define how you want to compare two
objects of your class

• For example, how do we would define whether
two cars are equal?
• Should they be equal if they have the same
price?

• Same make?
• Same model?
• It is up to you as the designer of the class

Overriding hashCode
• The hashCode method and the equals method
must be consistent.

•  If two of your objects are evaluated to be equal by
their equals method, then the two objects MUST
return the same integer hash code

• How do we decide what hash code should we
return?

• This is actually an involved topic…to make things
simple…you should just return 0 from you
hashCode method for all objects of your class

