
INHERITANCE
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 24

By Matthew Bernstein – matthewb@cs.wisc.edu

Inheritance
• In object-oriented programming,
inheritance is a relationship between a
more general class (called the superclass)
and a more specialized class (called the
subclass).

• The subclass inherits data and behavior
from the superclass

• Inheritance allows us to represent an “is a”
relationship between two class

“Is a” Relationship
• For example, suppose we have a program
that uses the classes Car, Airplane, and Boat

• What do these classes have in common?
• They are all vehicles

• A Car “is a” Vehicle
• We can therefore make a superclass called
Vehicle and make the classes Car, Airplane,
and Boat to be subclasses of Vehicle

Inheritance Hierarchy
•  This yields the following inheritance hierarchy:

Vehicle

Airplane

Car
Boat

Adding to the hierarchy
• Now let’s make subclasses of the Car class: SportsCar, SUV

Vehicle

Airplane
Car

Boat

SportsCar SUV

The Substitution Principle
•  The substitution principle states that you can always

use a subclass object when a superclass object is
expected

•  For example, if we have a method that expects a Vehicle
object:

 void processVehicle(Vehicle v);

• We can pass a Car object because Car is a subclass of

Vehicle
•  Furthermore, we pass this method any subclass of Car

such as SUV because SUV is a subclass of Car which is
a subclass of Vehicle

Example of the Substitution Principle
• You can use a reference variable of a certain class to

reference an object of this class’s subclass:
• Example:

 Vehicle vehicle = new Car();

Vehicle vehicle

Car
double price;

“Emily”
“Cindy”

“Jeremy”
“Bartholomew”

A reference variable of
type Vehicle is storing an
instance of type Car

Inheriting Public Variables
• A subclass inherits all of the public instance variables from

its superclass
• So for example, if we have a Vehicle class that has the

following public variable:

 public double topSpeed;

• All subclasses of vehicle will also have this. In our

example, all classes below Vehicle in the inheritance
hierarchy will also have the variable “topSpeed” by default
even if this variable is not declared in the subclass itself

Inheriting Public Methods
• A subclass inherits all of the public methods from its
superclass

• So for example, if we have a Vehicle class that has
the following public method:

 public void drive()

• You can call drive on an object of any subclass of
Vehicle even though the drive() method is not defined
or implemented inside the subclass itself

Declaring a Subclass
• You declare a class to be a subclass of another class

using the reserved word extends
• Example:

 public class Car extends Vehicle
 {
 …
 }

This denotes that the
Car class inherits from
the Vehicle class

You Don’t Declare a Superclass
• Any class can be a super class, we don’t have
to declare any class as a super class

• Thus you can decide to create a subclass of
any class you wish

Inheriting from Object
• In Java, all classes inherit from a class called
Object

• Object is considered the “cosmic” superclass
of all class in Java

• You do not need to explicitly inherit from
Object when defining your classes. This
happens automatically.

Methods Inherited from Object
• Some useful methods you inherit from object
includes:

•  toString() à returns a String representation of
the Object

• hashCode() à return this object’s hash code
• equals() à compare this object to another object
• clone() à return an identical copy of this object

It is common to override some of these methods
inside your class!

Calling a superclass’s constructor from a
subclass
•  How does a subclass initialize its instance variables? More

specifically, how can a subclass initialize the private variables in
its superclass?

•  We need to call the superclass’s constructor from the
subclass’s constructor

•  We use the Java reserved word super for referring to its
superclass (this is similar to the this reserved word)

•  Example:

 …

 super();
 …

Pass arguments to the superclass’s
constructor as required by the superclass

Why Inheritance?
•  Inheritance increases code reuse and decrease
redundant code

• Why is redundant code bad?
• Obviously it takes longer to code when you
need to repeat yourself

•  If you ever need to make a change in one
section of your code, you will have to also
change it in all of the redundant sections. This
greatly increases the chances of causing bugs

Programming Exercise - Trivia
•  Let’s write a program that will play a trivia game
• Our program will do something like the following:

 In which country was the inventor of Java born?
 1. Australia
 2. Canada
 3. Denmark
 4. United States

 2
 Correct!

Quick Aside – Who invented Java?

This dude

 James Gosling

Superclass: Question
• We will make a superclass called Question from which

other questions types will inherit (i.e. true or false, multiple
choice, short answer, etc.)

 class Question
 {
 String question;
 String answer;

 // We’ll fill in the rest as we go
 }

Subclass: MultipleChoiceQuestion
• We’ll make a class that inherits from Question called

MultipleChoiceQuestion

 class MultipleChoiceQuestion extends Question
 {
 ArrayList<String> answerChoices;
 int correctChoice;

 // Let’s fill in the rest as a class exercise
 }

Our Class Hierarchy
• So far, our class hierarchy looks as follows:

Question

MultipleChoiceQuestion

This class contains all
of the basic
functionality needed in a
Question

The subclasses implement all
Of the extended functionality necessary
To implement more specific question types

Question’s Constructor
•  Let’s define a constructor for our Question superclass

(nothing new here)

 …

 public Question(String question, String answer)
 {
 this.question = question;
 this.answer = answer;
 }

 …

MultipleChoiceQuestion’s Constructor
• Using the super keyword, we would need to call

Question’s constructor from MultipleChoiceQuestion’s
constructor:

 …

 public MultipleChoiceQuestion(String question,
 String answer)
 {
 super(question, answer);

 }
 …

New access modifier: protected
• Remember that an access modifier
determines where a class’s variables and
methods are visible (i.e. can be accessed)

• public à Visible inside the class or outside
its class (accessible from anywhere)

• private à Visible ONLY inside its class
• protected à(new) Visible inside its class,
inside its package, OR inside its
subclasses.

Overriding Methods in a Subclass
•  Let’s say that our Question class has the following method

for displaying its question to the user:

 public void display()
 {
 System.out.println(this.question);
 }

This method simply prints its question String
to the console

Overriding Methods in a Subclass
• However, we want objects of the
MultipleChoiceQuestion subclass to also
display all of the choices underneath the
question. How do we do this?

• We override the superclass Question’s
display method

• How do we override a superclass’s method?
• We define an identical method header in the
subclass but implement the method differently.

Overriding Methods in a Subclass
•  We override the “display” method inside the

MultipleChoiceQuestion class:

 @Override
 public void display()
 {
 System.out.println(this.question);

 for (int i = 0; i < choices.size(); i++)
 {
 System.out.println(i + “. “ + choices.get(i));
 }
 }

Print all of the
choices under
the question

It is best practice
to always include the
‘@Override’ annotation
whenever you override a
superclass’s method

Overriding Methods in a Subclass
• Now, whenever we call a
MultipleChoiceQuestion object’s display
method, we will call the
MultipleChoiceQuestion.display method
instead of the Question.display method

instanceof
• You can check whether an object being referenced by a

variable corresponding to the superclass is actually an
instance of a subclass

• You use the instanceof operator
•  This operator requires two operands (a reference variable

and a type)
•  It returns true if the first operand is a subclass of the

second operand:

 object_1 instanceof class

Example using instanceof
 // Create question and answer Strings
 String question = “What is your name?”;
 String answer = “Joe Shmoe”;

 // Create Question object
 Question q = new Question(question, answer);

 q instanceof Question; // True

 q instanceof MultipleChoiceQuestion; // False

Example using instanceof
 // Create question and answer Strings
 String question = “What is your name?”;
 String answer = “Joe Shmoe”;

 // Create MultipleChoiceQuestion object
 MultipleChoiceQuestion q
 = new Question(question, answer);

 q instanceof Question; // True

 q instanceof MultipleChoiceQuestion; // True

Programming Exercise: Finish the Trivia
Game
• Create a program that reads in questions and
answers from an input file. Then generate a quiz
by posing the questions in a random order to the
user.

•  In the input file, each line should begin with a
character that denotes the type of data that line
represents:
•  ‘Q’ denotes a normal question,
•  ‘A’ denotes an answer
•  ‘M’ denotes a multiple choice question.
•  ‘C’ denotes a choice corresponding to the previous

multiple choice question
•  ‘>’ denotes a new question/choice/answer combo

Trivia Game – File Input Format
• Example of a file using the input we specified:

 Q Where do you go to school?
A Wisconsin
>
M Where is the inventor of Java from?
C Canada
C America
C Denmark
C Australia
A 0 Choices

Multiple choice question

Question

Answer

Separates the previous question from the next one

