
POLYMORPHISM
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 25

By Matthew Bernstein – matthewb@cs.wisc.edu

What is Polymorphism?
• The definition of polymorphism is:

 The ability to treat objects of different
 classes in a uniform way.

• What does this mean?
• It is best explained with an example.

Consider the following example:
•  Let’s say we are implementing a drawing program that

allows the user to draw shapes to a canvas. We have the
following inheritance hierarchy:

 Shape

Circle

Each class has a draw method
•  Let’s say each class in the previous slide has a method

called draw that draws its shape to a canvas:

 public void draw()
 {
 // Draws itself
 }

•  The Circle’s draw method draws a circle What does the

Shape’s draw method draw? Let’s implement Shape so
that by default it simply draws a square.

Example
 Shape shape = new Shape();
 shape.draw();

 Produces:

 Circle circle= new Circle();
 circle.draw();

 Produces:

Okay, so far so good

• So far we have two classes: Shape and
Circle

• Circle override’s its superclass’s draw
• That is, each class’s draw method
draws a different shape

Let’s Implement a method called
DrawShape
• Now let’s say we define a method called
DrawShape that accepts a single Shape object
and draws it:

 public static void drawShape(Shape shape)
 {
 shape.draw();
 }

What actual shape will drawn in the
following example?
•  Let’s say in our main method, we implement the following

code:

 Circle circle = new Circle();

 drawShape(circle);

• What actual shape will be drawn to the canvas?
• Answer: a circle!

 This is what is actually
drawn to the canvas

What Happened?
• Even though inside the drawShape method we call draw

on a reference variable of type Shape, Java knows that
the object being referenced by this variable is actually an
instance of Circe:

 shape.draw();

Shape shape

Circle
double price;

“Emily”
“Cindy”

“Jeremy”
“Bartholomew”

How does Java determine which method
to call?

• Why did Java call Circle.draw instead of
Shape.draw even though the reference variable
“shape” was type Shape?

•  In Java, method calls are always determined by the
type of the actual object, not on the type of the
variable containing the object reference

• This is called dynamic method lookup
• Dynamic method lookup allows us to treat objects
of different classes in a uniform way. This ability is
called Polymorphism

