POLYMORPHISM

CS302 — Introduction to Programming
University of Wisconsin — Madison
Lecture 25

By Matthew Bernstein — matthewb@cs.wisc.edu

B
What is Polymorphism??

- The definition of polymorphism is:

The ability to treat objects of different
classes in a uniform way.

- What does this mean?
- It is best explained with an example.

Consider the following example:

- Let’'s say we are implementing a drawing program that
allows the user to draw shapes to a canvas. We have the
following inheritance hierarchy:

Shape

|

Circle

Each class has a draw method

- Let’s say each class in the previous slide has a method
called draw that draws its shape to a canvas:

public void draw()

{

/| Draws itself

- The Circle’s draw method draws a circle What does the
Shape’s draw method draw? Let's implement Shape so
that by default it simply draws a square.

Example

Shape shape = new Shape();
shape.draw();

Produces: -

Circle circle= new Circle();
circle.draw();

Produces: ‘

S
Okay, so far so good

-So far we have two classes: Shape and
Circle

- Circle override’s its superclass’s draw

- That 1s, each class’'s draw method
draws a different shape

Let's Implement a method called
DrawShape

- Now let’'s say we define a method called
DrawShape that accepts a single Shape object
and draws it:

public static void drawShape(Shape shape)
{

shape.draw();

What actual shape will drawn in the
following example?

- Let’s say in our main method, we implement the following
code:

Circle circle = new Circle();
drawShape(circle);

- What actual shape will be drawn to the canvas?

- Answer: a circle!
‘

This is what is actually
drawn to the canvas

What Happened?

- Even though inside the drawShape method we call draw
on a reference variable of type Shape, Java knows that
the object being referenced by this variable is actually an
instance of Circe:

shape.draw();

4 Circle

Shape shape

How does Java determine which method
to call?

Why did Java call Circle.draw instead of
Shape.draw even though the reference variable
“shape” was type Shape?

In Java, method calls are always determined by the
type of the actual object, not on the type of the
variable containing the object reference

This is called dynamic method lookup

Dynamic method lookup allows us to treat objects
of different classes in a uniform way. This abillity is
called Polymorphism

