
FILE I/O
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 26

By Matthew Bernstein – matthewb@cs.wisc.edu

Announcements
• P3 is due FRIDAY BEFORE 10PM

Introduction to File I/O
• What is File I/O?

• It stand for File Input/Output – it is just the
process of reading and writing files on your
computer

• We will deal with reading from text files
• A text file is a file that simply contains
characters

• Examples: .txt, .java, .html

File Paths - UNIX
• On your computer, each of your file’s location
is defined by an address called the absolute
file path

• On a UNIX system (such as Mac OSX or
Linux), file paths look as follows:

 /Users/matthewbernstein/dev/Main.java

UNIX File Paths
 /Users/matthewbernstein/dev/Main.java

Users

matthewberstein

dev

Main.java

Windows File Paths
• On a Windows system file paths look as
follows:

 c:\Users\matthewbernstein\dev\Main.java

The root file is in the “c” drive

Using objects of the File class
• We use File objects for representing files on your
computer

• Example:

// Create a file object that corresponds to a file
// named “myFile.txt” in a directory called
// “input”
File inputFile = new File(“/input/myFile.txt”);

Absolute Path

Using the Scanner for reading files
• We can use the Scanner for reading from files
• Remember:

 Scanner scan = new Scanner(System.in);

• Now we pass the File object to the Scanner’s constructor

instead:

 File inputFile = new File(“/input/myFile.txt”);
 Scanner scan = new Scanner(inputFile);

Passing the ‘System.in’
object to the Scanner’s
constructor

What’s the Error?

Scanner scan = new Scanner(“input.txt”);

Windows or Unix?
• How can we write a program that will read a file
using the file path pattern for either Windows or
Unix-like systems?

• If we hardcode a file path to use the forward
slash “/” then we are using the Unix file-path
pattern

• If we hardcode a file path to use the backward
slash “\” then we are using the Windows file-
path pattern

• How do we fix this?

Use File.separator
• Each File object has a public static variable called

separator that stores the string used to separate
directories in a file path

• On a Windows system, File.separator will return “\”
• On a Unix-like system, File.separator will return “/”

• Example:

 // path will store input/myFile.txt on Unix
 // and will store input\myFile.txt on Windows
 String path = “input” + File.separator + “myFile.txt”;

Example
-- see in class demo --

Bonus Topic: Reading from a web page
• We have now seen how to pass a System.in object for

reading input from the keyboard
• We have seen how to pass a File object for reading from

a file on your computer
• You can pass the Scanner a a URL object’s InputStream

object for reading from a webpage

Writing to Files
• We write to a file using a PrintWriter object from the

java.util package
• We pass a File object to the PrintWriter’s constructor

when creating a PrintWriter:

 File outfile = new File(“output.txt”);
 PrintWriter writer = new PrintWriter(outfile);

Create a File object corresponding
to the file on your computer that
you want to write to and pass this object
To the PrintWriter’s constructor

Writing to Files
• We actually write text to a file by calling a
FileWriter’s print or println method

• Example:

 PrintWriter writer = new FileWriter(outFile);
 writer.println("Hello World!");

• This will overwrite the content of the output file
with “Hello World!”

Closing the Output Stream
•  When your program is finished writing to the file you MUST call

the PrintWriter’s close method:

 PrintWriter writer = new FileWriter(outFile);
 writer.println("Hello World!");

 writer.close(); // Close the output stream

•  This method closes the output stream to the file
•  If you don’t close your PrintWriter, your program may terminate

without correctly writing to the output file due to the fact that
data may still be stuck in the PrintWriter’s buffer

•  Once you close the PrintWriter you can never use it again in
your program. If you try to use it, you will get an IOException

IOException
• All of the your File I/O operations must be surrounded by

a try-block followed by a catch-block to catch a possible
IOException:

 try
 {
 // File I/O goes here
 }
 catch (IOException e)
 {
 // Handle an exception here
 }

Programming Exercises
• This idea is challenging:
• Write a Markov Model that will read text from a
webpage and will generate random nonsensical
text from the actual text on the page (not the html
tags)

• Write a Markov Model that will generate random
nonsensical sequences of html sections
(example: image à paragraph à title à title)

• Combine the random text with the random html
sections to generate a completely randomized
web page

Cool CS Link of the Day
•  http://www.youtube.com/watch?v=mmQl6VGvX-c
• Google’s Knowledge Graph

