
COMMAND LINE
ARGUMENTS
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 28

By Matthew Bernstein – matthewb@cs.wisc.edu

Development Environments
•  There are many environments in which you can choose to

write programs
• You are familiar with the environment in a program called

Eclipse
• Eclipse is an Integrated Development Environment (IDE)
•  It is a big program that has many tools for building and

testing your programs
•  If you don’t have an IDE, then you will most likely use a

command shell window such as the terminal
•  The terminal is a program that use to interact with your

computer through text

Command Shell Window

Type your command here

Running Programs from the Command
Line
• You can run programs from your command line
•  If we have a program called “ConnectK”, we would run it

with the following command

 >> ConnectK

Command Prompt Command

Passing Arguments to Your Program
• You can pass arguments to your program when invoking

you program from the command line:

 >> ConnectK -K 4 -rows 10 -cols 12

The first argument is “-K”

Specifying Files
• One of the common uses of command line arguments is

the ability of the user to specify which file they would like
their program to read from

•  For example, let’s say we have a program called
“ReadFile” and it requires us to pass it a file path that
refers to the file it will read from, we would do this as
follows:

 >> ReadFile /folder/myFile.txt

Path to the file, “myFile.txt”

Receiving Command Line Arguments
•  In Java, we receive the command line arguments in the

main method.
•  The command line arguments are passed as an array of

Strings
• Remember the main method header:

 public static void main(String[] args)
 {
 …
 } “args” will store all of

the command line
arguments

Example
•  Let’s say we have a program called “CmndLine” and we

invoke it as follows:

 >> CmndLine hello world whatsup

•  In our main method, the String[] args variable will store

the arguments:

 [“hello”, “world”, “whatsup”]

Command Line Arguments in Eclipse
• Since Eclipse does not have a command line, it
has a feature that allows you to specify the
command line arguments you want to pass to
your program when you run it in Eclipse:

• Run à Run Configurations à Arguments
• Then type the the arguments into the textbox
labeled “Program arguments:”

• Every time you run your program, Eclipse will
pass the arguments specified in these
configurations

Command Line Arguments in Eclipse

Type the command line
arguments here

Validating the Correct Command Line
Arguments
•  If your program requires that the user enter
command line arguments according to some
specification, then it is your job as the program’s
writer to validate that the user entered arguments
of the correct format

• For example, we should always check that the
user is entering the correct number of arguments

•  If the user is not using your program correctly,
then you should print a message that tells the
user how to correctly invoke your program

Example
•  If your program requires the user include a file path and

the user does not include such an argument, your
program should print something like:

 Usage:

 ReadFile <file path>

Instructions telling the user how to invoke the program

Example
• Your program would look something like:

public static void main(String[] args)
{

 if (args.length < 1)
 {
 System.out.println(“Usage:”);
 System.out.println(“ReadFile <file path>”);
 return;
 }
 …

Converting Strings to Numbers
•  Let’s say we need to convert a command line argument

from a string to a double
• How do we do this?
• Answer: Use methods in the wrapper classes
• Example:

 double price = Double.parseDouble(args[1]);

Using the static method
parseDouble
That belongs to the Double
class

Passing the 2nd command
line argument that was
provided by the user

Other Conversions
• Each wrapper class has a “parse” method that accepts a

String object and returns an object that is the same type
as the wrapper class you are using to invoke the method

• Examples:

 Double.parseDouble()
 Integer.parseInt()
 Boolean.parseBoolean()

All of these methods
are passed a String
to be parsed

Catching an Exception
• Whenever you call one of these “parse”
methods, you need to surround it with a try-
catch block in order to catch the exception that
is thrown in the event that the String cannot be
parsed

Catching the Exception

 int value;

 try
 {
 value = Integer.parseInt(args[0]);
 }
 catch(NumberFormatException e)
 {
 e.printStackTrace();
 }

We need to catch
a NumberFormatException

Cool CS Link
•  JMonkeyEngine - a development platform for creating

video games in Java
•  http://jmonkeyengine.org/

