
EXCEPTION HANDLING
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 29

By Matthew Bernstein – matthewb@cs.wisc.edu

What is Exception Handling?
• According to Horstmann Ch. 7:

• “There are two aspects to dealing with
program errors: detection and handling”

• “In Java [and other programming
languages], exception handling
provides a flexible mechanism for
passing control from the point of error
detection to a handler that can deal with
that error”

What is an Exception?
• Oracle defines an exception as “an
event, which occurs during the execution
of the program, that disrupts the normal
flow of the program’s instructions”

• In Java, an Exception object is an object
that stores information about an exception
that occurred in your program

Throwing Exceptions
• When you detect an error in your program, you throw an

Exception object
•  Throwing an exception object tells your program that an

error was detected that needs to be handled

 if (numStudents <= 0)
 {
 throw new IllegalArgumentException(“Number of “ +

 “people is 0”);
 }

throw is a Java reserved word

Create a new Exception object

Error message stored in
the Exception object

Throwing Exceptions
• When you throw an exception, execution of your program is

transferred to code that handles the exception.
•  The next instruction is NOT executed
• Example:

 if (numStudents <= 0)
 {
 throw new IllegalArgumentException(“Number of “ +

 “ students is 0”);
 }

 avgGrade = total / numStudents;

If this exception is thrown
this code is not executed

Catching Exceptions
• An exception is handled by catching the exception
•  Think of it like a baseball player throwing execution from

the point of detection to the handler. We throw the
exception from the point of error and we catch it where
we handle the error

The exception I found an
exception!

I’ll handle it!

Catching Exceptions
•  We catch an exception in a catch-block
•  The code inside a catch-block is executed when an exception

is caught in the preceding try-block

 try
 {
 // An exception may be thrown somewhere
 // in here
 }
 catch (RuntimeException e)
 {
 // If the exception occurs, we handle it here
 }

try-block and catch-block
•  The try-block tells the proceeding catch-block where an

exception may be thrown
•  If an exception is thrown anywhere inside the try-block or in

any methods called inside the try-block, execution is
immediately passed to the catch-block

 try
 {

 }
 catch (RuntimException e)
 {

 }

The Exception object is passed to the catch-block

Simple Demonstration
 try
 {

 if (numStudents <= 0)
 {
 throw new IllegalArgumentException(

 “numStudents is 0”);
 }

 avgGrade = total / numStudents;

 }
 catch(IllegalArgumentException e)
 {
 System.out.println(e.getMessage());
 }

The Exception Class
•  All exception objects inherit from the Exception class
•  Many different subclasses of Exception have already been

implemented
•  Each subclass of Exception is used for catching different types of

errors

•  Just a few examples:

 RuntimeException – Signals an ambiguous error

 IOException – Signals an error during an I/O
 operation

 IndexOutOfBoundsException – Signals attempted
 access to an illegal index in an array object

The Exception class in the Inheritance
Hierarchy

The Exception class
inherits from the
Throwable class

More specific
exceptions inherit
from the Exception
class

Useful Methods in the Exception Class
•  printStackTrace() – This method prints its stack trace to

the standard error stream

 Remember the stack trace is a String that
 looks like:

 Exception in thread "main"
 java.lang.ArrayIndexOutOfBoundsException: 784
 at Main.makeLowerCase(Main.java:29)
 at Main.main(Main.java:10)

Useful Methods in the Exception Class
•  getMessage() – Gets the error message associated with

the Exception (not the entire stack trace).
• When creating an Exception object, we can set the

exception’s error message by passing it to its constructor
when we create it:

throw new IllegalArgumentException(“Number of students” +

 “ less than 1”);

Error Message

Useful Methods in the Exception Class
• Since all exception objects inherit these methods, you can

call these methods in your catch-block:

 …
 catch(IllegalArgumentException e)
 {
 e.printStackTrace();
 }

Creating your own Exception subclass
• You can design your own exception subclass with its own

specific methods you want to call in case of a specific
error that might occur in your program

•  For example, your exception subclass might contain
functionality for sending an error report to your database
that will track all errors occurring in your product:

More on catch-blocks
•  A single catch block can catch only one type of exception
•  For example, if you have a catch-block to catch an

IOException, it will not catch a NullPointerException
•  Example:

 try
 {
 …
 }
 catch(IOException e)
 {
 …
 }

The catch-block will not be
executed if a NullPointerException
Is thrown in the preceding try-block

Multiple catch-blocks
•  If your try-block can throw multiple types of exceptions, you can proceed

your try-block with multiple catch-blocks.
•  Each catch-block catches one type of exception
•  Example:

 try
 {
 …
 }
 catch(IOException e)
 {
 …
 }
 catch(IllegalArgumentException e)
 {
 …
 }

This code is executed
As soon as an IOException
Object is thrown in the try block

This code is executed
As soon as a
IllegalArgumentException
object is thrown in the try block

The finally-block
• The finally-block denotes code that should
ALWAYS be executed regardless of whether
an exception occurs or doesn’t occur in the
try-block

• The finally-block must proceed a try-block

When an exception is NOT thrown in the
try-block

 try
 {
 …
 }
 finally
 {
 …
 }

path of execution

When an exception is thrown in the try-
block

 try
 {
 …
 }
 finally
 {
 …
 }

path of execution

An exception occurred here

NOTE, This code
structure does NOT
handle the exception
that occurs in the
try-block. It simply
denotes code that
should always be
executed even when
an exception occurs in
the try-block

Jump to the finally-block
before handling the exception

Checked vs. Unchecked Exceptions
• A checked exception is an exception that the compiler

forces you as a programmer to write a handler for.
•  For example, if you call a method that throws an

IOException, the compiler will force you to surround it with
a try-catch block

• An unchecked exception is an exception that the
compiler will not force you to deal with. Unchecked
exceptions all inherit from the RuntimeException class

• Basically, unchecked exceptions are all errors that occur
because of your own poor logic in your program

• Checked exceptions are all errors for which you program
has no control over (such as a non-existent file)

Not handling an exception in the same
method it is thrown
•  In most cases, Exceptions are NOT handled in the same

method that throws them. The following is an
UNREALISTIC example:

 try
 {

 if (numStudents <= 0)
 {
 throw new IllegalArgumentException(

 “Number of students is less than 0”);
 }

 avgGrade = total / numStudents;

 }
 catch(IllegalArgumentException e)
 {
 System.out.println(e.getMessage());
 }

We usually don’t
throw AND handle
an exception thrown
In the same method

Not handling an exception in the same
method it is thrown
•  Instead, we throw the exception in one method and rely on the

calling method to handle the exception
•  Example:

 try
 {
 File myFile = new File(“file.txt”);
 Scanner scan = new Scanner(myFile);

 }
 catch(FileIOException e)
 {
 …
 }

The Scanner’s constructor
might throw an exception,
however, the Scanner’s
constructor doesn’t catch it.
It is up to us, the calling method,
to catch that exception

Throwing an exception and not catching it
•  If you write a method that might throw an exception, and

you decide to NOT handle that exception inside that
method, then you are required to tell any method that calls it
that this method might throw an exception

• We do this by typing the Java reserved word throws in the
method header of the method that might throw an exception

• Example:

public static void writeToFile(File output) throws IOException
{

 …
}

This denotes that this method might throw
an IOException, and therefore, it is the
caller’s responsibility to handle the
exception

Example

public static void writeToFile(File output) throws IOException
{

 try
 {
 PrintWriter writer = new PrintWriter(output);
 writer.println(“hello, world!”);
 }
 finally
 {
 writer.close();
 }

}

This method
might throw
an IOException

If the writer throws
an exception here,
then we, in turn,
throw the exception to
our caller

If an exception occurs, this code is executed
BEFORE the method terminates and throws
the exception

Example Continued
•  Let’s say we have the following main method that calls the method in the

previous slide

 public static void main(String[] args)
 {
 File output = new File (“file.txt”);

 try
 {
 writeToFile(output);
 }
 catch (IOException e)
 {
 System.out.println(e.getMessage());
 }
 }

Catch the possible
IOException thrown
in the writeToFile
method

The path of the exception in the previous
example
•  Let’s track the path of the exception in the previous

example
•  If an exception is thrown, the path of the exception is as

follows:

Catch!

Throw

Throw

 Main

 writeToFile

 new PrintWriter()

Why Exception Handling?
• Exception handling:

• Provides a flexible mechanism that allows you to
separate the code that is used to actually run the
program (when things are going smoothly) and
the code that is executed when bad things
happen

• Allows communication within your program about
the types of errors that occur

• Allows you to flexibly decide which parts of your
program will be responsible for handling an error
detected somewhere else within your program

When to use exception handling
• Exception handling is a very useful
mechanism provided in many programming
languages, but it is often difficult to
understand when to use it

• Most beginners tend to overuse exception
handling and use it to catch any little error

• So when is it appropriate?
• In general this is a debatable topic

When to use exception handling
• I once read a good explanation from Stack
Overflow and it went as follows:

•  My personal guideline is: an exception is thrown when a fundamental
assumption of the current code block is found to be false.

•  Example 1: say I have a function which is supposed to examine an
arbitrary class and return true if that class inherits from List<>. This
function asks the question, "Is this object a descendant of List?" This
function should never throw an exception, because there are no gray
areas in its operation - every single class either does or does not inherit
from List<>, so the answer is always "yes" or "no".

•  Example 2: say I have another function which examines a List<> and
returns true if its length is more than 50, and false if the length is less.
This function asks the question, "Does this list have more than 50 items?"
But this question makes an assumption - it assumes that the object it is
given is a list. If I hand it a NULL, then that assumption is false. In that
case, if the function returns either true or false, then it is breaking its own
rules. The function cannot return anything and claim that it answered the
question correctly. So it doesn't return - it throws an exception.

Cool Link
• A research group at Stanford used machine learning

algorithms to train a computer how to fly an RC helicopter:
•  http://www.youtube.com/watch?v=VCdxqn0fcnE

