
INTRODUCTION TO
JAVA
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 2

By Matthew Bernstein – matthewb@cs.wisc.edu

Our First Java Program

public class Main
{

 public static void main(String[] args)
 {
 // Say hello to the world.
 System.out.println(“Hello World!”);
 }

}

Case Sensitivity

• Java is case sensitive
• “Main” does not equal “main”

Statements
• A statement represents a single Java
instruction

• Statements usually occupy a single line of a
Java program

• All statements must be terminated by a semi-
colon
• Example:

int x = 4;
• The first statement that is executed is the first
statement that appears in your “main” method

White Space Agnosticism
• White space characters include:

• Single space, line-break, tab, etc…
• Java is agnostic to white space
• 1 white space character between elements is
treated the same as 100 white space
characters between elements
• Example:

int x = 4;
int x = 4;

Comments
•  Java allows you to insert text into your program that will

not affect the program at all (treated as white space)
• To write a single line comment, use “//”

• Anything following “//” on the same line will be ignored
• Example:

// This text will be treated as white space
• To write a multi-line comment use “/*” and “*/”

• Example:
/*
This text will be treated as white space
*/

Curly Braces
• Sections of code are enclosed by curly brackets
• An essential part of Java structure
• Common styles of writing curly braces (pick one and use

consistently):

public static void main(String[] args) {

 // CODE HERE
}

public static void main(String[] args)
{

 // CODE HERE
}

Comments and Coding Style
• Comments should describe the purpose of a section
of code

• White space should be used to make the code
readable and organized

• Your use of comments and white space is extremely
important!

• Convoluted and messy code will:
• Result in bugs
• Be difficult to integrate with other code
• Will be difficult to extend in order to build new

functionality

The Boilerplate

•  The stuff not to worry about (for now):

public class Main
{

 public static void main(String[] args)
 {

 // YOUR CODE GOES HERE
 }

}

The Important Stuff (for now…)

public class Main
{

 public static void main(String[] args)
 {
 // Say hello to the world.
 System.out.println(“Hello World!”);
 }

}

Calling a Method
• Method name followed by parenthesis
•  Inside the parenthesis, we place the argument
• Basic template: methodName(argument);
• Example:

 System.out.println(“Hello World!”);

The code being executed by println simply prints its
argument to the console (we don’t see that code
here). println “lives in” System.out

Methods (a.k.a. Functions)
• A method is a section of code that carries
out a particular task (example: add two
numbers, sort a list, etc.)

• A method has a name
• A method can accept parameters, called
arguments, that it uses to complete its
task

• The code within a method can be
executed by calling that method

Where is “System.out.println()”?
• Calling a method executes code located
somewhere else. Where is
“System.out.println()”?

• It comes from the Java Class Library, which
is a large body of reusable Java code that has
already been written to help you solve
common problems. It comes prepackaged
with the Java compiler.

• Things like writing to the console would be
challenging to do from scratch and would
involve interacting with the underlying system.

Classes (and other things not to worry
about right now)

• A class is a fundamental structure used in Java
programs. We will cover classes extensively later in the
course. For now, your “main” method should be
contained in a class that has the same name as your java
file (see HelloWorld example).

• An Access Modifier (“public”, “private”, etc.) are used to
describe what elements of your program have access to
other elements of your program. Don’t worry about them
for now…

Errors
• Two Types of Errors:

• Compile-time Errors (“Syntax Errors”) – There is
something wrong with the rules of the language and
the compiler is unable to translate your code to
Java bytecode.

• Run-time Error – The program is syntactically
correct and can be compiled, but doesn’t do what it
is supposed to do. Some run-time errors can cause
the program to crash.
• For example, trying to divide a number by 0 will
cause the program to crash.

• When a run-time error occurs that causes the program to
crash, Eclipse will output an Exception Trace

• Example of an exception trace you might see in the
Eclipse console when your program crashes:

Exception Trace

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4
 at MeanMedianMode_Methods.bubbleSort(MeanMedianMode_Methods.java:168)
 at MeanMedianMode_Methods.calculateMedian(MeanMedianMode_Methods.java:118)
 at MeanMedianMode_Methods.main(MeanMedianMode_Methods.java:31)

Cool CS Link of the Day
• Visualizing Facebook’s global network:
•  https://www.facebook.com/note.php?

note_id=469716398919

