
PRIMITIVE VARIABLES
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 3

By Matthew Bernstein – matthewb@cs.wisc.edu

Variables
• A variable is a storage location in your computer
• Each variable has a type, name, value

• Example:
 x = 4

• There are many different types of variables for
storing different types of values.

• For example, a computer stores an integer
differently than it stores any real number. Different
types of variables reflect the underlying way the
computer stores the value

Primitive Numeric Variables – Two Basic
Types
•  Integer – Whole numbers without a fractional part

(-1,0,1,2…)
•  In the java programming language, an integer variable is called an

int
•  Floating-Point Numbers – Numbers that include a

fractional part (6.2434)
•  Java has multiple variable types for holding floating-point numbers.

The one we will use most commonly is called a double
•  Floating point numbers are stored in the computer as an integer

and a location for the decimal place

Java Primitive Data Types

For more information on Java Primitive Data types, visit:
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Declaring Variables
• You must declare a variable in a declaration statement

before using it!
• Declaration requires specifying the type of the variable

and the name of the variable:

 int x; // Declare an int called “x”
 double y; // Declare a double called “y”

Assigning Values to Variables
• Assignment is done using the assignment operator (=)
• Example :

 int x; // Initialize an int called “x”
 x = 4; // Assign x a value of 4

• You can initialize a variable and assign it a value in the

same statement. This is called initializing a variable:

 int x = 4;

Initialization and Assignment Rules
• You can only declare a variable once
• After declaring the variable, you can reassign it as often

as you like
• Example:

 int x = 4; // Declare once
 x = 5; // Reassign x to another int
 x = 6; // And again…

• A variable of a one type cannot be set to the value of a

different type (for the most part)

Variable Naming Conventions
• Variable names should describe their function
• Names should be short, yet descriptive
• Bad practice to use single letters for variables

• CamelCase:
 playerAge
 numApples

• Underscore:

 player_age
 num_apples

• Pick one naming convention and stay consistent!

Reserved Words
•  There are certain words that have special meaning in the

Java programming language. These are called reserved
words

• You cannot name a variable with a reserved word. The
compiler will see the reserved word and treat it
accordingly rather than understand that you meant for that
word to be a variable name.

• Reserved words are highlighted purple in Eclipse editor
• Example reserved words:

 class
 public
 static

Common Issues With Numeric Variables
•  A computer has limited memory. Thus, it cannot possibly store

every decimal of an irrational number. Floating point numbers
only have a certain decimal precision. Thus, you may
experience rounding errors when dealing with floating point
numbers.

•  Numeric variables have a limited range of the numbers they
can store. For example, an int variable can only store numbers
between -2,147,483,648 and 2,147,483,647

•  How do we get around these limitations?

•  Use an object that allows us to deal with big numbers (i.e.
java.math.BigInteger)

Constant Variables
• When a variable is defined with the reserved word final, its

value can never change.
• Variables defined this way are called constants
• Example:

 final double BOTTLE_VOLUME = 2.0;

• You will get a compile time error if you write any statement

that assigns a new value to BOTTLE_VOLUME
• Constants should be named with all capital letters to

distinguish them from non-constant variables

Arithmetic
•  Four arithmetic operators:

•  Addition (+)
•  Subtraction (-)
•  Multiplication (*)
•  Division (/)

•  The combination of variables, literals, operators, and
methods is called an expression

•  Follows standard order of operations. Exceptions are
made explicit using parenthesis.

• Example:
•  a + b / 2
•  (a + b) / 2
•  a + (b / 2)

Increment & Decrement Operators
•  In programming you will commonly have to increment or

decrement a numeric variable by 1
•  Increment and decrement operators provide an easy way

to do this:

• Both of these statements do the same thing:
 counter = counter + 1;

 counter++;
• Similarly:

 counter = counter – 1;
 counter--;

Dividing with Floating-point Numbers
• Division works as we would expect provided that at least

one of the numbers is a floating-point number
•  For example all of the following statements return the

number 1.75:
 7.0 / 4.0;
 7 / 4.0;
 7.0 / 4;

Dividing ints
• If both numbers are integers than the result of
the division is always an integer, with the
remainder discarded.

• This is often a common source of error.
Always know what variables you are dealing
with.

• The following example results in 1 (NOT 1.75):

 7 / 4

Modulus Operator (%)
• Also called “Modulo” or “Mod”
•  This operator returns the remainder when dividing two

integers.
•  The following example results in 3:

 7 % 4

 7 divided by 4 is 1 with a remainder of 3

Find Dollars and Cents
•  Let’s say we have a variable pennies. We want to know

how many dollars and extra cents we have. How do we
do this?

public class Main
{

 public static void main(String[] args)
 {
 int pennies = 2347; // Number of pennies

 // …WRITE SOLUTION HERE…
 }

}

Solution
public class Main
{

 public static void main(String[] args)
 {

 // Initialize variables
 final int PENNIES_PER_DOLLAR = 100;
 int pennies = 2347; // Number of pennies
 int dollars;
 int cents;

 // Compute and output solution
 dollars = pennies / PENNIES_PER_DOLLAR;
 cents = pennies % PENNIES_PER_DOLLAR;

 System.out.println(dollars + “ dollars and ” + cents + “ cents”);
 }

}

Powers and Roots
•  There are no operators for powers or roots. You have to

use the operators available.
•  Thankfully performing these operations has already been

implemented for us. We just need to use the code in a
library of code called java.lang.Math

• How do we code this?

• Solution:
 b * Math.pow(1 + r / 100, n);

b× 1+ r
100

"

#
$

%

&
'
n

Other Mathematical Methods
• Examples:

• Math.sqr(x)
• Math.pow(x,y)
• Math.sin(x)

• Consult:
http://docs.oracle.com/javase/7/docs/api/java/
lang/Math.html

Converting Integers to Floating-Point
Numbers
•  This is easy and allowed. Think about it…a floating point

number is simply an integer (the mantissa) and a decimal
location

• Example:
 int x = 9;
 double y = x;

•  Java just takes the integer and assigns the correct
decimal location

Converting Floating-Point Numbers to
Integers
•  This is not allowed because it is dangerous.
•  This is NOT allowed:

 double x = 4.5;
 int y = x;

• Why?
•  The fractional component is lost
•  The magnitude of the floating-point number might be too large to fit

into an integer type variable

So how do we make this conversion?
• Answer: The cast operator
• Example:

 double x = 4.5;
 int y = (int) x; // First we cast x to an int type

• You are essentially “overriding” the compiler and
demanding it to treat the x as an integer. If x is too large
to store as an int, then y will be assigned to the largest
possible int (2,147,483,647).

• BE CAREFUL WHEN CASTING

Using other code in your code
• The import statement
• An import statement allows you to “import”
code from other locations and run it in your
program

• The import statement goes at the top of your
file before your class declaration

• Example:
 import java.util.Scanner;

• Now we can use the code in Scanner

Using Scanner to get input from user
•  We use the code in Scanner to prompt data input by the user.
•  Example:

 import java.lang.Scanner

public class Main {

 public static void main(String[] args) {

 // Create a Scanner object
 Scanner in = new Scanner(System.in);

 // Prompt user for for an integer
 System.out.println(“Please input an integer:”);
 int userInteger = in.nextInt();

 // Output the integer
 System.out .println(userInteger);
 }

}

Using the Scanner in our Pennies To
Dollar Example
-- See Demo --

Programming Exercise
•  For next class create a program that will ask the user to

input a number corresponding to a temperature in
degrees Fahrenheit. Convert this temperature to Celsius
and output this value to the user.

• Example:

 Please input a temperature in degrees F: 32
 0.0

Input
Output

Cool CS Link of the Day
•  TIME Magazine article, “2045 The Year Man Becomes

Immortal”:
•  http://content.time.com/time/magazine/article/

0,9171,2048299,00.html

