
BOOLEAN VARIABLES
AND CONDITIONAL
OPERATORS
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 6

By Matthew Bernstein – matthewb@cs.wisc.edu

Boolean Variables
• A Boolean variable is a primitive data type that can store

one of two possible values: true or false
• Example:

 boolean failed = true;
• You can then use this Boolean variable later in your

program:
 // Only executed if failed has been set to true
 if (failed)
 {
 …
 }

Relational Operators return Boolean
Variables

• Remember the Relational Operators (<, >, <=,
>=, !=, ==). These all return a Boolean value

• Example:
 int x = 10;
 boolean isLessThanTen = x < 10;

Evaluates to false
Assigns this
result to
“isLessThanTen”

Conditional Operators
•  A Conditional Operator operates on Boolean variables and

yields a new Boolean variable
•  AND (&&) returns true if both operands are true. If either

operand is false, this operator returns false
•  Example:

 x && y
•  OR (||) return true if either or both operands are true. Returns

false if both operands are false
•  Example:

 x || y
•  NOT (!) return true if operand is false, return false if operand is

true
 !x

Putting It All Together
• We usually combine relational operators and conditional

operators in “if” statements
• NOTE: Relational operators have a higher precedence

than conditional operators
• Example:

 if (altitude > 12 && altitude < 31)
 {
 System.out.println(“Stratosphere”)
 }

More examples…
•  For what range of the variable “altitude” will this if

statement’s condition evaluate to “true”?

 if (!(altitude > 12 && altitude < 31))
 {
 System.out.println(“Not Stratosphere”)
 }

• Answer:

 Any value less than twelve or any value greater than 31

Common Error
• What is wrong with the following “if”
statement?

 if (0 <= temp <= 100)
 {
 …
 }

It Should Look Like…

if (0 <= temp && temp <= 100)
{

 …
}

Common Error
• What is wrong with the following “if”
statement?

 if (input == 1 || 2)
 {
 …
 }

It Should Look Like…

if (input == 1 || input == 2)
{

 …
}

•  The “||” operator operates on two Boolean
variables:

De Morgan’s Law
• Rules for simplifying complicated logical
conditions:

 !(A && B) is the same as !A || !B

 !(A || B) is the same as !A && !B

Applying De Morgan’s Law
• How would we make the following “if” statement less

confusing using De Morgan’s Law?

!(country.equals(“USA”) && !state.equals(“AK”) && !state.equals(“HI”))

Solution

!(country.equals(“USA”) && !state.equals(“AK”) && !state.equals(“HI”))

!country.equals(“USA”) || !!state.equals(“AK”) || !!state.equals(“HI”))

!country.equals(“USA”) || state.equals(“AK”) || state.equals(“HI”))

Apply De Morgan’s Law

Cancel out “!!”

Order of Operator Precedence

http://docs.oracle.com/javase/tutorial/java/
nutsandbolts/operators.html

Example of Operator Precedence
Demonstrations of operator precedence:

 boolean someVariable = 3 * 2 == 5 + 1

 boolean anotherVariable = 3 < 2 == 5 > 1;

 if (7 % 4 < 5 && 6 > 9 - 5)
 {
 System.out.println(“This was executed”);
 }

Cool Link
• Barcelona Supercomputing Center: Simulating the human

heart:
•  http://www.youtube.com/watch?

v=tKD2hfF27rM&feature=youtu.be

