
THE “WHILE” LOOP
CS302 – Introduction to Programming
University of Wisconsin – Madison
Lecture 7

By Matthew Bernstein – matthewb@cs.wisc.edu

The “While” Loop
• A “while” loop is a block of code that will execute over and

over again while some condition is met.
•  The program first checks the condition. If the condition

holds true, the program executes the statements within
the while-loop. After executing the statements, the
program goes back to the top and re-checks the condition.

•  Form:
 while (condition)
 {
 statements
 }

Flowchart of “While” Loop

Condition == true?

Execute
Statements

True

False

Example

 while (balance < TARGET)
 {
 year++;
 interest = balance * RATE / 100;
 balance = balance + interest;
 }

Test Condition

This code is
executed if the
condition tests to true

After the
code
is executed
we
re-test the
condition

What will happen here?

 final double TARGET = 1000;
 double balance = 2000;

 while (balance < TARGET)
 {
 year++;
 interest = balance * RATE / 100;
 balance = balance + interest;
 }

 System.out.println(year + “ years to reach target”);

What will happen here?

 final double TARGET = 1000;
 double balance = 50;

 while (balance < TARGET)
 {
 year++;
 interest = balance * RATE / 100;
 }

 System.out.println(year + “ years to reach target”);

The Break Statement
•  The break statement breaks program execution out of the inner-most loop. The

following program stops computing the balance if the years exceed 20.
•  Example:

 while (balance < TARGET)
 {
 year++;
 if (year > 20)
 {
 System.out.println(“Would take more than 20 years);
 break;
 }

 interest = balance * RATE / 100;
 balance = balance + interest;
 }

 System.println(years + “ years”);

The “return” statement
• The return statement ends execution within a
method (it returns execution to whatever code
called this method)

• So far, all of our programs have been written
in the “main” method

• Thus, adding a return statement will
essentially end the program (this is the case
for the programs we have written so far)

Example
 while (balance < TARGET)
 {
 year++;
 if (year > 20)
 {
 System.out.println(“Would take more than 20 years);
 return;
 }

 interest = balance * RATE / 100;
 balance = balance + interest;
 }

 System.println(“Would take “ + year + “ years.”);

Input Validation
• We loop until the user’s input is valid (i.e.
the conditional statement tests whether
the user input was valid)

• Read about Scanner’s hasNext(),
hasNextInt(), hasNextDouble(), methods
here:
• http://docs.oracle.com/javase/1.5.0/docs/
api/java/util/Scanner.html

Programming Exercise
•  Change your temperature converter program such that when

the user enters invalid input, your program prompts the user
to enter new input.

•  Example Program Execution:
 Input Units (Enter “F” or “C”): V
 Invalid input, please try again: 3.0
 Invalid input, please try again: F
 Output Units: C
 Input Temperature: slkdjlfksdlf
 Invalid input, please try again: 0
 0.0 F = -17.7778 C

Back to “While” Loops
Problem-Solving: Hand-Tracing
Consider the example:

 int year = 1;
 while (balance < TARGET)
 {
 year++;

 balance = balance * (1 + RATE / 100);
 }

 System.println(“Would take “ + year + “ years.”);

•  Should year start at 0 or 1?
•  Should the condition use “balance <

TARGET” or “balance <= TARGET”?

Hand Tracing
• Create a table where each column corresponds to a

variable and each row corresponds to an iteration of the
loop.

•  Let’s say, our balance starts at $100, our interest rate is
%50, and our target is $200

• Resulting Table:

•  This would output 3 years, even though it only took us 2
years to reach $200. We should start “year” at 0, not 1.

year balance

1 100

2 150

3 225

Hand Tracing
• Now let us assume our target is $225 (our initial balance

is still $100 and our interest rate is still %50)

• At the 3rd evaluation of our conditional statement, (when
year = 2 and balance = 225), we see that we have
reached our target and therefore we should not execute
the code inside the loop again. Thus, we should use
“balance < TARGET” instead of “balance <= TARGET”

year balance

0 100

1 150

2 225

Hand-Tracing
What will be the final sum after the following code executes:

 int n = 1729;
 int sum = 0;
 int digit;

 while (n > 0)
 {
 digit = n %10;
 sum = sum + digit;
 n = n / 10;
 }

The “Do” Loop
• Sometimes you want to execute the body of a
loop at least once and perform the loop test after
the body is executed. To do this, we use the “do”
loop:

 do
 {
 statements
 }
 while (condition)

Flowchart of the “Do” Loop

Execute
Statements

Condition == true ?
True

False

Compared to flowchart of “While” Loop

Condition == true?

Execute
Statements

True

False

Example

 int value;

 do
 {
 System.out.print(“Enter an integer < 100: “);
 value = in.nextInt(); // “in” is a Scanner object
 }
 while (value >= 100);

Programming Exercise
• Adjust your Rock Paper Scissors program to allow the

user to play multiple rounds against the computer. The
program should keep a score for the number of wins by
the player and computer. After each round, the program
should output the scores.

• When the user enters “q” the program should quit. When
the user quits, the program should output the final score.

•  The program should now validate that the user entered
either “rock”, “paper”, “scissors” or “q”.

Example Execution
What hand will you throw? (Input either "rock”, "paper”, "scissors”, or “q” to quit):
rock
Computer threw scissors, you threw rock
You won! (Score: Player 1, Computer 0)

What hand will you throw? (Input either "rock”, "paper”, "scissors”, or “q” to quit):
paper
Computer threw scissors, you threw paper
You lost! (Score: Player 1, Computer 1)

What hand will you throw? (Input either "rock”, "paper”, "scissors”, or “q” to quit):
rock
Computer threw rock, you threw rock
Tie! (Score: Player 1, Computer 1)

What hand will you throw? (Input either "rock”, "paper”, "scissors”, or “q” to quit):
q
Thanks for playing! (Final Score: Player 1, Computer 1)

Let’s Code…
•  Let’s start building our Rock, Paper, Scissors game

Cool CS Link of the Day
• Google Maps 3D Buildings:
•  http://www.youtube.com/watch?v=N6Douyfa7l8

