Problem 1: Future value of money invested at a given interest rate and what it means to solve symbolically first!

\[
TVOM := F = P \cdot (1 + a)^n
\]

(1)

\[
years := solve(TVOM, n)
\]

(2)

\[
yearsTo25K := \text{subs}(P = 15000, F = 25000, a = 0.055, years)
\]

(3)

It will take a little over 9 and a half years to get to $25,000 if you currently have $15,000 and it earns 5.5% interest.

\[
evalf(yearsTo25K)
\]

(4)

Problem 2: Comparing investment options

Get an expression for computing \(F \), the future value of money, by solving \(TVOM \) for \(F \) or using the right-hand side function, \(\text{rhs()} \)

\[
FVOM := \text{rhs}(TVOM)
\]

(5)

Option 1: invest $1500 at 5.75% for 3 years, then reinvest at 5.20% for the remaining 3 years

\[
option1_{\text{years1to3}} := \text{subs}(P = 1500, a = 0.0575, n = 3, FVOM)
\]

(6)

\[
option1_{\text{years4to6}} := \text{subs}(P = option1_{\text{years1to3}}, a = 0.0520, n = 3, FVOM)
\]

(7)

Option 2: invest $1500 at 5.5% for 6 years

\[
option2 := \text{subs}(P = 1500, a = 0.055, n = 6, FVOM)
\]

(8)

In hindsight, it would have been better to invest at the guaranteed 5.5% for 6 years than to take the initially higher rate of 5.75% for 3 years.

Problem 3: Present value of money payed out over \(n \) periods of time

\[
PVOM := P = \frac{A \cdot (1 + a)^n - 1}{a \cdot (1 + a)^n}
\]

(9)

\[
\text{monthlyPayment} := \text{solve}(PVOM, A)
\]
Monthly payment for a $10,000 loan at a rate of 6.9% annual interest and a payment period of 4 years is $239.00

\[
\text{monthlyPayment} := \frac{P \times a \times (1 + a)^n}{(1 + a)^n - 1}
\]

\text{(10)}

Monthly payment for $10,000 loan at rate of 6.9% annual interest and a payment period of 4 years is $239.00

\[
\text{payment1} := \text{subs}\left(P = 10000, a = \frac{0.069}{12}, n = 48, \text{monthlyPayment}\right)
\]

\[
\text{payment1} := 238.9987698
\]

\text{(11)}

Monthly payment for $10,000 loan at rate of 5.9% annual interest and a payment period of 4 years is $234.39

\[
\text{payment2} := \text{subs}\left(P = 10000, a = \frac{0.059}{12}, n = 48, \text{monthlyPayment}\right)
\]

\[
\text{payment2} := 234.3920719
\]

\text{(12)}

\textbf{Problem 4: Shop for a better deal (attempt to solve symbolically)}

\[
\text{monthlyInterestRate} := \text{solve}(PVOM, a)
\]

\[
\text{monthlyInterestRate} := \text{RootOf}\left(-P \times Z \times (1 + Z)^n + A \times (1 + Z)^n - A\right)
\]

\text{(13)}

The \text{solve} \text{ command didn't work, so we try the allvalues command on the result of the solve command.}

\[
\text{monthlyIntRate} := \text{allvalues}(\text{monthlyInterestRate})
\]

\[
\text{monthlyIntRate} := \text{RootOf}\left(-P \times Z \times (1 + Z)^n + A \times (1 + Z)^n - A\right)
\]

\text{(14)}

Maple still cannot find a symbolic solution, so we will have to find a numeric solution to this problem.

\textbf{Problem 5: Shop for a better deal (solve numerically)}

First plot the monthly payment vs the interest rate to see approximately what interest rate would give us the lower payment.

We will need an expression representing \(A \) (the monthly payment) in terms of \(a \) (the monthly interest rate) for our loan for $10,000 over 4 years.

Recall that we earlier solved \(PVOM \) for \(A \) and named the result \text{monthlyPayment}

\[
\text{myMonthlyPayment} := \text{subs}(P = 10000, n = 48, \text{monthlyPayment})
\]

\[
\text{myMonthlyPayment} := \frac{10000 \times a \times (1 + a)^{48}}{(1 + a)^{48} - 1}
\]

\text{(15)}

\[
\text{plot}\left(\text{myMonthlyPayment}, a = 0 .. \frac{0.06}{12}\right)
\]
From the plot we see that a (monthly) interest rate around 0.004 (or 0.4%) will give us a monthly payment of $230.

We use \texttt{fsolve} to find the exact interest rate

\begin{verbatim}
> desiredMonthlyInterestRate := fsolve(myMonthlyPayment = 230, a = 0.003 .. 0.005)
\end{verbatim}

\begin{equation}
\text{desiredMonthlyInterestRate} := 0.004112756193
\end{equation}

\begin{verbatim}
> desiredAnnualInterestRate := 12 \cdot \text{desiredMonthlyInterestRate}
\end{verbatim}

\begin{equation}
\text{desiredAnnualInterestRate} := 0.04935307432
\end{equation}

We need an annual interest rate of 4.93% or lower to have a monthly payment of $230 or less for a 4 year loan on $10,000

\textbf{Problem 6: The effects of inflation}

First we wish to determine the yearly rate of return when an initial investment of $100,000 doubles in 5 years.

\begin{verbatim}
> TVOMa := solve(TVOM, a)
\end{verbatim}

\begin{equation}
TVOMa := e^{\frac{\ln\left(F/P\right)}{n}} - 1
\end{equation}

\begin{verbatim}
> yrlyRateOfReturn := subs(P = 100000, F = 200000, n = 5, TVOMa)
\end{verbatim}

\begin{equation}
yrlyRateOfReturn := e^{\frac{1}{5} \ln(2)} - 1
\end{equation}
So, the yearly rate of return, ignoring inflation, is 14.9%

Now we take inflation into consideration.

Substitute c in for a in the formula for the future value of an investment

$$TVOMc := F = P \ (1 + c)^n$$

and formula for the present value of money borrowed over time

$$PVOMc := P = \frac{A \ ((1 + c)^n - 1)}{c \ (1 + c)^n}$$

Solve the new future value of money formula for c, the combined interest-inflation rate

$$cRateTVOM := solve(TVOMc, c)$$

$$cRateTVOM := \frac{\ln\left(\frac{F}{P}\right)}{n} - 1$$

$$rateEqn := (1 + c) = (1 + i) \cdot (1 + r)$$

$$rateEqn := 1 + c = (1 + i) \ (1 + r)$$

Solve the equation that relates c, i, and r for c

$$cRateIR := solve(rateEqn, c)$$

$$cRateIR := i \ r + i + r$$

Set the two expressions for c equal to each other and solve for r

$$cRateEqn := cRateTVOM = cRateIR$$

$$cRateEqn := \frac{\ln\left(\frac{F}{P}\right)}{n} - 1 = i \ r + i + r$$

$$realReturn := solve(cRateEqn, r)$$

$$realReturn := \frac{\ln\left(\frac{F}{P}\right)}{n} - i - 1 \ \frac{1}{1 + i}$$

$$myRealReturn := subs(P = 100000, F = 200000, n = 5, i = 0.028, realReturn)$$

$$myRealReturn := 0.9727626459 \ e^{\frac{1}{5} \ln(2)} - 1.000000000$$

$$evalf(myRealReturn)$$

0.117410851

My real return on the investment when inflation is 2.8% is 11.7%

What if inflation is 5%?

$$myRealReturn5 := subs(P = 100000, F = 200000, n = 5, i = 0.05, realReturn)$$

$$myRealReturn5 := 0.9523809524 \ e^{\frac{1}{5} \ln(2)} - 1.000000000$$

$$evalf(myRealReturn5)$$

0.093998433

Now the real return is only 9.39%.

What if inflation is 8%?
Problem 7: What if there are complications?

Suppose it takes 9 years instead of 5?

```plaintext
> myRealReturn9yrs := subs(P = 100000, F = 200000, n = 9, i = 0.028, realReturn)

myRealReturn9yrs := 0.9727626459 e^{\frac{1}{9} \ln(2)} - 1.000000000
```

```plaintext
> evalf(myRealReturn9yrs)

0.050641769
```

So just a 5.06% return on $100,000 dollars. Let's compare this to investing the money in a CD at 5.5% for 5 years.

```plaintext
> FinvestCD := subs(P = 100000, a = 0.055, n = 5, TVOM)

FinvestCD := F = 1.306960006 \times 10^5
```

```plaintext
> myRealReturnCD := subs(P = 100000, FinvestCD, i = 0.028, n = 5, realReturn)

myRealReturnCD := 0.9727626459 e^{\frac{1}{5} \ln(1.306960006)} - 1.000000000
```

```plaintext
> evalf(myRealReturnCD)

0.026264591
```

We would have $130,696.00 from our CD after 5 years, but the real return, if inflation is 2.8%, is only 2.62%.

Moral of the story:
High inflation rates definitely encourage businesses (and individuals) to spend now instead of save or invest for a future return. But, taking the safe way and just saving the money is still likely to lead to less real return than investing (if you can double your money in 5 years).