
CS 536 Midterm Exam
Spring 2013

ID: ________________________________

Exam Instructions:

• Write your student ID (not your name) in the space provided at the top of each page of the exam.

• Write all your answers on the exam itself.

• Feel free to use the backs of the pages for scratch work. If you need more space for scratch work
(or if you'd prefer not to use the backs of the pages), you may use a blue book.

• A copy of the Mini grammar is provided to you for reference.

• When you are finished, turn in this exam as well as your page of notes (and blue book, if you used
one). Make sure your name is on your page of notes.

 Points Out of

Question 1 Part (a) 6

Part (b) 6

Question 2 10

Question 3 Part (a) 15

Part (b) 4

Part (c) 4

Part (d) 4

Question 4 15

Question 5 Part (a) 24

Part (b) 12

Total 100

Page 1 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Question 1 (12 points)

This question concerns the language of words. A word contains vowels and consonants and must
follow these rules:

1. Every word must have at least one vowel.
2. No word can have two vowels in a row.

Part (a) Draw a deterministic finite-state machine for the language of words as described above.
Label the start state "S" and use a double circle to indicate the final state(s). You may label the edges
vowel or cons (meaning consonant).

Part (b) Write a regular expression for the language of words. You may use vowel and cons in
your regular expression.

Page 2 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Question 2 (10 points)

Suppose we extend the Mini language to allow MATLAB-like for loops. A Mini for loop statement
has the following structure:

for (id = begin : incr : end) {
 // body of for loop
}

where id is an identifier and begin, incr, and end are expressions that evaluate to integers.

The Mini for loop works the same as the following Java code:
for (id = begin; id <= end; id += incr) {
 // body of for loop
}

The increment value (incr) is optional (if it is not present, the default increment of the for loop is 1),
so the Mini for loop:

for (id = begin : end) {
 // body of for loop
}

is equivalent to the Java code:
for (id = begin; id <= end; id += 1) {
 // body of for loop
}

The body of the Mini for loop statement has the same format as the body of a Mini if statement.

Suppose we have added the following two tokens to our Mini grammar:

Token name JLex Pattern
COLON ":"

FOR "for"

What new productions will need to be added to the Mini grammar to incorporate this extension?
A copy of the Mini grammar is provided. Use lower-case names for nonterminals and use the added
tokens as well as tokens already given in the grammar. The productions you add may make use of any
nonterminals already given in the grammar.

Write your productions so they are easy to understand; do not make them LL(1). Note that, consistent
with Mini grammar provided, you do not need to deal with issues of operator associativity or
precedence.

Put your answer on the next page.

Page 3 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Put your answer for Question 2 on this page

Page 4 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Question 3 (27 points)

Part (a) Suppose we have defined two new binary operators ? and $. Write an unambiguous
context-free grammar for the language of expressions with integer literal operands and two operators
? and $. The language should also allow parenthesis, as usual. Here are some examples to let you
figure out the precedences and associativities:

expression equivalent fully-parenthesized expression
1 ? 2 ? 3 (1 ? 2) ? 3

1 $ 2 $ 3 1 $ (2 $ 3)

1 $ 2 ? 3 (1 $ 2) ? 3

1 ? 2 $ 3 1 ? (2 $ 3)

1 $ 2 ? 3 $ 4 (1 $ 2) ? (3 $ 4)

1 ? 2 $ 3 ? 4 1 ? (2 $ 3) ? 4

Page 5 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Part (b) Using the grammar you wrote for part (a), draw the parse tree for the input sequence:

1 ? 2 $ (3 ? 4)

Page 6 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Part (c) If the grammar you wrote for part (a) has any immediate left recursion, apply the
transformations learned in class to remove it, and write the result below. Give the entire grammar, not
just the rules you transformed.

Part (d) If the grammar you wrote for part (b) needs left factoring, do that and write the result below.
Give the entire grammar, not just the rules you transformed.

Page 7 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Question 4 (15 points)
Below is a non-LL(1) context-free grammar for a simple language of declarations and assignments:

program Æ varDeclList stmtList

varDeclList Æ varDeclList varDecl
 | varDecl

varDecl Æ type ID ;

type Æ INT
 | BOOL

stmtList Æ stmtList stmt
 | stmt

stmt Æ ID = exp ;
 | IF (exp) { varDeclList stmtList }

exp Æ ID
 | INTLIT
 | exp + exp
 | exp * exp
 | exp == exp

One simple optimization a compiler can perform (on languages that don't allow pointers) is to remove
code that declares or defines a variable that never gets used in the program. For example,

int x; // x is declared
int y; // y is declared
int z; // z is declared
x = 7; // x is defined
y = x + 3; // y is defined, x is used
z = 2*x + 4; // z is defined, x is used
if (z == 3) { // z is used
 y = 5; // y is defined
}
// y is never used, so we could remove the declaration of y
// and the two statements that define y

In order to perform this optimization, the compiler needs to know which variables get used (as opposed
to just declared and/or defined) in a program. You are to define a syntax-directed translation rule for
each of the CFG's productions so that the translation of a program is a list of the variables used in the
program. Assume that the value of an ID token (ID.val) is the name of that identifier and the value of
an INTLIT token (INTLIT.val) is the actual integer value.

You may use the following List operations (assume that L1 and L2 are lists and N is a name):

new List() creates a new (empty) list
new List(N) creates a new list containing N
L1.add(N) adds N to list L1
L1.remove(N) removes N from L1
union(L1, L2) creates a new list containing all the names in L1 and L2 (with

duplicates removed)

Page 8 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Write your translation rules in the table below. (If there is a nonterminal that is not relevant to the
translation, you do not need to write a translation rule for grammar productions with that nonterminal
on the left-hand side.) For a grammar production with a left-hand side nonterminal x, your translation
rule should be of the form "x.trans = "

Grammar rule Translation rule

program Æ varDeclList stmtList

varDeclList Æ varDeclList varDecl

varDeclList Æ varDecl

varDecl Æ type ID ;

type Æ INT

type Æ BOOL

stmtList Æ stmtList stmt

stmtList Æ stmt

stmt Æ ID = exp ;

stmt Æ IF (exp) { varDeclList stmtList }

exp Æ ID

exp Æ INTLIT

exp Æ exp + exp

exp Æ exp * exp

exp Æ exp == exp

Page 9 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Question 5 (34 points)

Below is a context-free grammar for a language of simple blocks of code:
block Æ LCURLY declList stmtList RCURLY

declList Æ decl declList | ε

stmtList Æ stmt stmtList | ε

decl Æ TYPE ID SEMI

stmt Æ ID EQUALS exp SEMI
 | IF LPAREN exp RPAREN block ELSE block
 | RETURN exp SEMI

exp Æ ID | INT

Part (a) Fill in the FIRST and FOLLOW sets for the nonterminals below:

Non-terminal X FIRST(X) FOLLOW(X)

block

declList

stmtList

decl

stmt

exp

Page 10 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Part (b) Recall that we can think of a predictive parser as building the parse tree for its input top-
down. Each time the parser's top-of-stack symbol is a nonterminal X, it pops X and pushes the right-
hand side of some grammar rule X Æ α. This corresponds to growing the parse tree by giving the
leftmost X leaf in the tree one child for each symbol in α.

Below and on the next page are three incomplete "snapshots" of moments during a parse of the
grammar given on the previous page. Each snapshot includes the input being parsed, the current token,
the current symbols in the parser's stack, and the current partial parse tree build by the parser. Your job
is to fill in the missing parts of each snapshot.

Snapshot 1:
input: LCURLY ID EQUALS INT SEMI RETURN ID SEMI RCURLY

current token: RETURN

 partial parse tree current stack

Fill in the contents of the current stack.

block

LCURLY

declList

ε

stmtList RCURLY

stmtList stmt

ID EQUALS INT SEMI

Page 11 of 12

ID:_____________________ CS 536 Spring 2013 © 2013 Beck Hasti

Snapshot 2:
input: LCURLY TYPE ID SEMI RCURLY

current token: ID

 partial parse tree current stack

ID

SEMI

declList

stmtList

RCURLY

EOF

Fill in the partial parse tree.

Snapshot 3:
input: ________________________

current token: RCURLY

 partial parse tree current stack

Fill in the input and the contents of the current stack.

block

LCURLY

declList

ε

stmtList RCURLY

Page 12 of 12

