
CS536 Spring 2011 FINAL ID:____________________ Page 2 of 11

Question 2. (30 POINTS)
Consider adding forward function declarations to the Little language. A forward func-
tion declaration is a function header (including its return type and formal parameters)
without a body. The normal declaration (including the body) comes later in the code.
For example:
int f (int x, double y); // forward declaration of f

int f (int x, double y) { } // normal declaration of f

The reason for adding forward function declarations is to allow mutually recursive func-
tions. For example, the code above could include a (normal) declaration of a function g
between the two declarations of f, and the body of g could include a call to f (since the
symbol table would have an entry for f).

The following table lists the errors that name analysis must detect for forward and normal
function declarations, and the corresponding error message numbers.

ERROR MESSAGE NUMBER

1function declaration (forward or normal) with the same name as
a previously declared global variable

2forward function declaration with the same name as a previous
forward or normal function declaration

3normal function declaration with the same name as a previous
normal function declaration

forward declaration with no normal declaration later in the code 4

5normal declaration’s return type and/or parameter list don’t
match those of previous forward declaration

Think about how to change Little name analysis to handle forward function declarations.
Assume the following:
• You can create different kinds of symbol-table entries (Sym objects) for variables

and for functions, and given a Sym object, you can tell whether it is for a variable or
for a function.

• For a forward or normal function declaration, you can create a Sym object that
includes the return type and a list of the parameter types.

• For a forward or normal function declaration, you can compare the declaration’s
return type and list of parameters with the return type and parameter list in an exist-
ing Sym object that includes those values.

CS536 Spring 2011 FINAL ID:____________________ Page 3 of 11

On the rest of this page and on the next 3 pages, describe each of the following:

(a) What changes (if any) would you make to the over-all approach to name analysis?
(b) What are the steps that would be done by the name-analysis method for a forward

function declaration? Be sure to say which of the error messages listed in the table
on the previous page might be given.

(c) What are the steps that would be done by the name-analysis method for a normal
function declaration. Be sure to say which of the error messages listed in the table
on the previous page might be given.

(d) If one or more of the error messages listed in the table on the previous page would
not be given by the name-analysis methods for forward or for normal function dec-
larations, when and how would those error messages be given.

(a) What changes (if any) would you make to the over-all approach to name analy-
sis?

CS536 Spring 2011 FINAL ID:____________________ Page 4 of 11

(b) Steps for name analysis for a forward function declaration (include error msg
numbers)

CS536 Spring 2011 FINAL ID:____________________ Page 5 of 11

(c) Steps for name analysis for a normal function declaration (include error msg
numbers)

CS536 Spring 2011 FINAL ID:____________________ Page 6 of 11

(d) When and how any “missing” error messages would be given

CS536 Spring 2011 FINAL ID:____________________ Page 7 of 11

Question 3. (20 POINTS)
When a function is called, the following tasks may be done to set up the called function’s
Activation Record:
Task 1. set the value of the access link field (if access links are being used to access

non-local variables)
Task 2. push the values of the actual parameters
Task 3. set the value of the save-display field, and set the appropriate element of the

display to point to the new Activation Record (if a display is being used to
access non-local variables)

Task 4. set the value of the return-address field (to the address of the instruction that
follows the jal instruction in the calling function)

Task 5. set the value of the control-link field (to a copy of the value in the Frame
Pointer)

Task 6. set the Frame Pointer to point to the bottom of the new AR
Task 7. leave space in the new AR for local variables (by subtracting the appropriate

number from the Stack Pointer).

Part (a): In class (and in the on-line notes) we said that tasks 1 and 2 are done by the
calling function (as part of the code generated for a function call), and tasks 3 − 7 are
done by the called function (as part of the code generated for the “function prefix”).
However, this is not necessarily the only option.

For each of the seven tasks, circle the correct answer below to say whether it could be
done the other way around. Assume that the symbol-table entry for a function ID
includes its nesting level, a list of the types of its formal parameters, and the total number
of bytes needed for its local variables.

Task 1 could be done by the called function: YES NO

Task 2 could be done by the called function: YES NO

Task 3 could be done by the calling function: YES NO

Task 4 could be done by the calling function: YES NO

Task 5 could be done by the calling function: YES NO

Task 6 could be done by the calling function: YES NO

Task 7 could be done by the calling function: YES NO

CS536 Spring 2011 FINAL ID:____________________ Page 8 of 11

Part (b): Some of the 7 tasks can be performed by either the calling function or the
called function. Is there a reason for assigning those tasks to one or the other? Consider
both execution time and the size of the generated code.

CS536 Spring 2011 FINAL ID:____________________ Page 9 of 11

Question 4. (15 POINTS)
Assume that we have extended the Little language by adding break statements:
• A break is valid only inside a while loop.
• When executed, a break causes a jump to the code that follows the loop (i.e., to the

place that is jumped to when the loop’s condition is false).

Assume that the type checker has verified that all break statements are inside while loops.
Consider the changes that would need to be made to the code-generation phase of the
compiler. Below is the codeGen method for while loops for the original Little lan-
guage, and an empty method for break statements. You are to make any changes neces-
sary to the first method in order to handle break statements, and you are to complete the
second method. You may change the method headers. If you want to add new fields to
the ASTnode class, declare them below, before the start of the first codeGen method.
Don’t forget that loops can be nested!

// codeGen for WhileStmtNode
public void codeGen() {

String loopLabel = Codegen.nextLabel();

String falseLabel = Codegen.nextLabel();

Codegen.genLabel(loopLabel);

myExp.codeGen();

Codegen.genPop(Codegen.T0, 4);

Codegen.generate("beq", Codegen.T0, Codegen.FALSE, falseLabel);

myStmtList.codeGen();

Codegen.generate("b", loopLabel);

Codegen.genLabel(falseLabel);

}

CS536 Spring 2011 FINAL ID:____________________ Page 10 of 11

// codeGen for BreakStmtNode
public void codeGen() {

}

CS536 Spring 2011 FINAL ID:____________________ Page 11 of 11

Question 5. (25 POINTS)
Consider the following Little program:

int k;

int h(int b) {
k++;
return b;

}

void g(int a) {
k = a;
printf("%d", a);
printf("%d", k);

}

void f(int x) {
x = x − 3;
g(h(k));
k = k − 4;
printf("%d", x);
printf("%d", k);

}

void main() {
k = 10;
f(k);
printf("%d", k);

}

Part (a)
This program may produce different output depending on which parameter-passing
modes are used for f’s parameter x, g’s parameter a, and h’s parameter b. Fill in the
table below, providing the output that corresponds to the specified modes.

x a b output

value value value a: k: x: k: k:

reference value reference a: k: x: k: k:

value-result value value a: k: x: k: k:

value name value a: k: x: k: k:

