
Week 1 (W) Page 1

Welcome to CS 536:
Introduction to Programming Languages and Compilers!

Instructor: Beck Hasti
• hasti@cs.wisc.edu
• Office hours to be determined

TAs
• Andrey Yao
• Robert Nagel
• Sadman Sakib
• Saikumar Yadugiri
• Ting Cai

Course websites:
canvas.wisc.edu

www.piazza.com/wisc/spring2024/compsci536

pages.cs.wisc.edu/~hasti/cs536

About the course
We will study compilers
We will understand how they work
We will build a full compiler

Course mechanics
Exams (60%)
• Midterm 1 (18%): Thursday, February 29, 7:30 – 9 pm
• Midterm 2 (16%): Thursday, March 21, 7:30 – 9 pm
• Final (26%): Sunday, May 5, 2:45 – 4:45 pm

Programming Assignments (40%)
• 6 programs: 5% + 7% + 7% + 7% + 7%+ 7%

Homework Assignments
• 8 short homeworks (optional, not graded)

Week 1 (W) Page 2

What is a compiler?

A compiler is
• recognizer of language S

• a translator from S to T

• a program in language H

Front end vs back end

front end = understand source code S; map S to IR

IR = intermediate representation

back end = map IR to T

Week 1 (W) Page 3

Overview of typical compiler

Scanner

Parser

Semantic analyzer

Intermediate code generator

Optimzer

Code generator

Object program

sequence of characters

sequence of tokens

AST

augmented, annotated AST

IR

optimized IR

assembly or machchine code

front end

back end

Symbol
table

Source program

Week 1 (W) Page 4

Scanner
Input: characters from source program
Output: sequence of tokens
Actions:
• group characters into lexemes (tokens)
• identify and ignore whitespace, comments, etc.

What errors can it catch?
• bad characters

• unterminated strings

• integer literals that are too large

Parser
Input: sequence of tokens from the scanner
Output: AST (abstract syntax tree)
Actions:
• group tokens into sentences

What errors can it catch?
• syntax errors

• (possibly) static semantic errors

Semantic analyzer
Input: AST
Output: annotated AST
Actions: does more static semantic checks
• Name analysis

• Type checking

Intermediate code generator
Input: annotated AST
Output: intermediate representation (IR)

Week 1 (W) Page 5

Example

a = 2 * b + abs(-71);

Scanner produces tokens:

AST (from parser)

Symbol table

3-address code

Week 1 (W) Page 6

Optimizer
Input: IR
Output: optimized IR
Actions: improve code
• make it run faster, make it smaller
• several passes: local and global optimization
• more time spent in compilation; less time in execution

Code generator
Input: IR from optimizer
Output: target code

Symbol Table
Compiler keeps track of names in
• semantic analyzer
• code generation
• optimizer

P1 : implement symbol table

Block-structured language
• nested visibility of names
• easy to tell which def of a name applies
• lifetime of data is bound to scope

Example: (from C)
int x, y;

void A() {
 double x, z;
 C(x, y, z);
}

void B(){
 C(x, y, z);
}

	Welcome to CS 536: Introduction to Programming Languages and Compilers!
	About the course
	Course mechanics
	What is a compiler?
	Front end vs back end
	Overview of typical compiler
	Scanner
	Parser
	Semantic analyzer
	Intermediate code generator
	Example
	Optimizer
	Code generator
	Symbol Table

