
Week 2(M) Page 1

CS 536 Announcements for Monday, January 29, 2024
Course websites:

pages.cs.wisc.edu/~hasti/cs536
www.piazza.com/wisc/spring2024/compsci536

Office hours
• Beck (in 5360 Comp Sci)

• 2:00 – 3:00 pm Mondays
• 9:00 – 10:30 am Tuesdays
• 10:30 am – noon Fridays

• office hours for TAs are being determined
Programming Assignment 1
• test code due Sunday, Feb. 4 by 11:59 pm
• other files due Thursday, Feb. 8 by 11:59 pm

Reminders
• report exam conflicts using CS 536 Alternate Exam Request Form

(link on Exam Information page)
• contact Beck within first 3 weeks of classes if

• you participate in religious observances that may conflict with course requirements
• you receive accommodations through the McBurney center

Last Time
• intro to CS 536
• compiler overview

Today
• start scanning
• finite state machines

• formalizing finite state machines
• coding finite state machines
• deterministic vs non-deterministic FSMs

Next Time
• non-deterministic FSMs
• equivalence of NFAs and DFAs
• regular languages
• regular expressions

Week 2(M) Page 2

Recall
A compiler is
• recognizer of language S
• a translator from S to T
• a program in language H

front end = understand source code S; map S to IR
IR = intermediate representation
back end = map IR to T

Why do we need a compiler?
• processors can execute

only binaries (machine-
code/assembly programs)

• writing assembly
programs will make you
lose your mind

• allows you to write
programs in nice(ish)
high-level languages like
C; compile to binaries

Week 2(M) Page 3

Special linkage between scanner and parser (in most compilers)

Scanning

Scanner translates sequence of chars into sequence of tokens

Each time scanner is called it should:
• find longest sequence of chars corresponding to a token
• return that token

Scanner generator
• Inputs:

• one regular expression for each token
• one regular expression for each item to ignore (comments, whitespace, etc.)

• Output: scanner program

To understand how a scanner generator works, we need to understand FSMs

Week 2(M) Page 4

Finite-state machines
(aka finite automata, finite-state automata)

• Inputs: string (sequence of characters)

• Output: accept / reject

Language defined by an FSM = the set of strings accepted by the FSM

Example 1:
Language: single-line comments starting with // (in Java / C++)

Nodes are states
Edges are transitions
Start state has arrow point to it
Final states are double circles

Week 2(M) Page 5

How a finite state machine works
curr_state = start_state
let in_ch= current input character

repeat

 if there is edge out of curr_state with
 label in_ch into next_state
 curr_state = next_state
 in_ch = next char of input

 otherwise

 stuck // error condition

until stuck or input string is consumed

if entire string is consumed and
 curr_state is a final state

 accept string

otherwise

 reject string

Formalizing finite-state machines
alphabet (Σ) = finite, non-empty set of elements called symbols

string over Σ = finite sequence of symbols from Σ

language over Σ = set of strings over Σ

finite state machine M = (Q, Σ, δ, q, F) where

Q = set of states

Σ = alphabet

δ = state transition function Q×Σ→Q

q = start state

F = set of accepting (or final) states

L(M) = the language of FSM M = set of all strings M accepts

finite automata M accepts x = x1x2x3...xn iff

𝛿𝛿(𝛿𝛿(𝛿𝛿(… 𝛿𝛿(𝛿𝛿(𝛿𝛿(𝑠𝑠0, 𝑥𝑥1), 𝑥𝑥2), 𝑥𝑥3), … 𝑥𝑥𝑛𝑛−2), 𝑥𝑥𝑛𝑛−1), 𝑥𝑥𝑛𝑛)

Week 2(M) Page 6

Example 2: hexadecimal integer literals in Java

Hexadecimal integer literals in Java:
• must start 0x or 0X
• followed by at least one hexadecimal digit (hexdigit)

• hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
• optionally can add long specifier (l or L) at end

Q =

Σ =

δ =

q =

F =

State transition table

 0 1 – 9 a – f A – F x X l L

s0

s1

s2

s3

s4

se

Week 2(M) Page 7

Coding a state transition table
curr_state = start_state

done = false

while (!done)

 ch = nextChar()

 next = transition[curr_state][ch]

 if (next == error || ch == EOF)

 done = true

 else

 curr_state = next

return final_states.contains(curr_state) && next != error

Example 3: identifiers in C/C++

A C/C++ identifier
• is a sequence of one or more letters, digits, underscores
• cannot start with a digit

Week 2(M) Page 8

Deterministic vs non-deterministic FSMs
deterministic
• no state has >1 outgoing edge with same label
• edges can only be labelled with elements of Σ

non-deterministic
• states may have multiple outgoing edges with same label
• edges may be labelled with special symbol 𝜀𝜀 (empty string)

𝜺𝜺 -transitions can happen without reading input

Example 2 (revisited): hexadecimal integer literals in Java

Example 4: FSM to recognize keywords for, if, int

Recap
• The scanner reads a stream of characters and tokenizes it (i.e., finds tokens)

• Tokens are defined using regular expressions

• Scanners are implemented using (deterministic) FSMs

• FSMs can be non-deterministic

	CS 536 Announcements for Monday, January 29, 2024
	Recall
	Special linkage between scanner and parser (in most compilers)
	Scanning
	Finite-state machines (aka finite automata, finite-state automata)
	Example 1:
	How a finite state machine works
	Formalizing finite-state machines
	Example 2: hexadecimal integer literals in Java
	Coding a state transition table
	Example 3: identifiers in C/C++
	Deterministic vs non-deterministic FSMs
	Example 2 (revisited): hexadecimal integer literals in Java
	Example 4: FSM to recognize keywords for, if, int
	Recap

