CS 536 Announcements for Monday, January 29, 2024

Course websites:
pages.cs.wisc.edu/~hasti/cs536
www.plazza.com/wisc/spring2024/compsci536

Office hours P . o& \‘
e Beck (in 5360 Comp Sci) o~ QeSS Copres Y hesle
e 2:00-3:00 pm Mondays ovesr\n .
e 9:00-10:30 am Tuesdays ooy G\'ﬁ‘\\“‘o\b
e 10:30 am — noon Fridays ax Ko N

o office hours for TAs are being determined

Programming Assignment 1
e test code due Sunday, Feb. 4 by 11:59 pm
e other files due Thursday, Feb. 8 by 11:59 pm

Reminders
e report exam conflicts using CS 536 Alternate Exam Request Form
(link on Exam Information page)

e contact Beck within first 3 weeks of classes if

e you participate in religious observances that may conflict with course requirements
e you receive accommodations through the McBurney center

Last Time
e intro to CS 536
e compiler overview

Today
e start scanning
¢ finite state machines
o formalizing finite state machines
¢ coding finite state machines
e deterministic vs non-deterministic FSMs

Next Time
e non-deterministic FSMs
e equivalence of NFAs and DFAs
e regular languages
e regular expressions

Week 2(M) Page 1

A compiler is

e recognizer of language S
e atranslatorfrom Sto T
e aprogram in language H

Recall

H

S —

;(‘ o(\X

end

\Do\.)\s
2n A T

front end = understand source code S; map S to IR

IR = intermediate representation

backend=map IRto T

Why do we need a compiler?

e processors can execute
only binaries (machine-
code/assembly programs)

e writing assembly

programs will make you

lose your mind

e allows you to write
programs in nice(ish)

high-level languages like

C; compile to binaries

Week 2(M)

Symbol
table

Source program

sequence of characters
v

Scanner

sequence of tokens

Parser

AST
v

Semantic analyzer

augmented, annotated AST

Intermediate code generator

back end

optimized IR

Code generator

assembly or machchine code

Object program

Page 2

Special linkage between scanner and parser (in most compilers)

Source

Program

Sequence of characters

lexical analyzer
(scanner)

syntax analyzer @ lexical analyzer
(parser) w (scanner)

Sequence of tokens l next token,
(parser) (@)
a <[=] Ip

source code

Conceptual
organization

Scanning
Scanner translates sequence of chars into sequence of tokens

Each time scanner is called it should:
¢ find longest sequence of chars corresponding to a token
e return that token

vy E Z Wit (9)

PL&»SAS(,

Scanner generator

0
e Inputs: (owo&\

e one regular expression for each token
e one regular expression for each item to ignore (comments, whitespace, etc.)

e Output: scanner program

To understand how a scanner generator works, we need to understand FSMs

Week 2(M) Page 3

FA Finite-state machines Fom
(aka finite automata, finite-state automata)

¢ Inputs: string (sequence of characters) — -?{f\;-rq_ \(’,M)Sd\v\
e Output: accept / reject = {‘S 5‘\'&‘\\«\5 .\.\ \(""‘5"'“59 L
Language defined by an FSM = the set of strings accepted by the FSM

Come{\nr ve,ooosw'\‘u,s \6‘\“\ progrw\g \n Yontw \0.3_5'
F%N\ (‘(/(,oosxi'ws \0&3\ Sﬂ\“ﬁé n Sowme \M E‘

Example 1:
Language: single-line comments starting with / (in Java / C++)

// ‘b‘twg; Xo end 0% \\ne
N ox (\“\ &e—72 — %\‘vo?-t\?\aw(\ st "

/ / - “Ponovtlong (4 L o
A _——a % % \n \’0\/
=)) -""ﬁ C ‘V\\Or? \‘> ‘_\Pi \‘\\

@!are states

Edges are fransitions con \\Owe

Start state has arrow point to it o«\\‘ I.L p\“\-c\ Q\e’
Final states are double circles

COns'\c\
//:.:‘A\“.\/ IINa AN Y4

N ocm o R II'o\we BOR ¥ T eyqoa\n 4eq) x
X

Week 2(M) Page 4

How a finite state machine works

curr state = start state
let in ch= current input character

repeat

if there is edge out of curr state with
label in ch into next state

curr_state = next_state — Lo\l = Hon
in ch = next char of input

otherwise
stuck // error condition
—_——

until stuck or input string is consumed

if entire string is consumed and
curr state 1s a final state

accept string \/
otherwise

reject string)<

Formalizing finite-state machines
alphabet (X) = finite, non-empty set of elements called symbols
string over X = finite sequence of symbols from X

language over X = set of strings over X
finite state machine M= (Q, %, §, g, F) where
0 = set of states ,g(i Ake
¥ = alphabet — S:.;"_re' (wnion osf &“ QA%L \Q\QAS\
d = state transition function QXX—-Q %{\'Q"\ (%‘6‘4 e N\m\\) LT n

g = start state — 0,\\\\ l_) oyeQ

F= set of accepting (or final) states ch
L(M) = the language of FSM M = set of all strings M accepts — (Caa %9_, .\C\Q‘“\\‘W,

finite automata M accepts x = x1.x2.X3... X iff

6(6(5(6(6(5(]9-(2:(‘1);3(:2);353); xn—z);xn—l);xn) é‘:

Week 2(M) Page 5

Example 2: hexadecimal integer literals in Java

Hexadecimal integer literals in Java:
e must start Ox or 0X &2— pumbee O (aer \etter oo.p'\‘td\'o\
o followed by at least one hexadecimal digit (hexdigit)
e hexdigit=0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,A,B,C,D,E, F
e optionally can add long specifier (1 or 1) at end

‘ol (=
@2 2EQedin @) 2 Q)
nex O g%
Ex Revple of

0= 25551152, 54,54 $ Ocpted O \FUd
%= i O—O\,o\-s?, A’EX,)Z-; Ll Lz’ 6‘\&»&4 N SRalR \ 23

6= W€ Sure Truns\tvon Table SYU in Sin SRt
7= %o Dt et UL OxULY
F=% 554
State transition table
0 1 -9 a-f A-F X X 1l L

So S' Se Qe e Se Se Se Se

$1 5‘7_ 61-
S4

Se | S¢ | Se | Se | Se | Se | Se Se | Se
Vo MondlQ 2w oty S | Ceme TR & kol Sye

Ny
3% mM\‘\‘“S

Week 2(M) Page 6

Coding a state transition table

curr state = start state
done = false
while (!done)

ch = nextChar ()

next = transition[curr state] [ch]

if (next == error || ch == EOF)
done = true

else

curr state = next

return final states.contains(curr state) && next != error

Wotks Q(‘O\I{AQ}‘ M i A_@-?QX IS

Example 3: identifiers in C/C++

A C/C++ identifier L 9 —
e is a sequence of one or more letters, digits, underscores
e cannot start with a digit

) L,0,_
- O‘T"’@{)

A resasigeion s coan't el \n undgrocate

LU’XJ\ B oAr\‘,

—— O_

Week 2(M) Page 7

DFA NFA
Deterministic vs non-deterministic FSMs
deterministic

¢ no state has >1 outgoing edge with same label
e edges can only be labelled with elements of X

non-deterministic
o states may have multiple outgoing edges with same label
e edges may be labelled with special symbol £ (empty string)

€ -transitions can happen without reading input

Example 2 (revisited): hexadecimal integer literals in Java

hexdint L,
_aoo O%,‘z5 QLAY L©

Nerdagt
Example 4: FSM to recognize keywords for, if, int
£ 025 0@
._\-,
>0 A5 O0= O
OO

Recap

—

e The scanner reads a stream of characters and tokenizes it (i.e., finds tokens)
e Tokens are defined using regular expressions
e Scanners are implemented using (deterministic) FSMs

e FSMs can be non-deterministic

Week 2(M) Page 8

	CS 536 Announcements for Monday, January 29, 2024
	Recall
	Special linkage between scanner and parser (in most compilers)
	Scanning
	Finite-state machines (aka finite automata, finite-state automata)
	Example 1:
	How a finite state machine works
	Formalizing finite-state machines
	Example 2: hexadecimal integer literals in Java
	Coding a state transition table
	Example 3: identifiers in C/C++
	Deterministic vs non-deterministic FSMs
	Example 2 (revisited): hexadecimal integer literals in Java
	Example 4: FSM to recognize keywords for, if, int
	Recap

