CS 536 Announcements for Wednesday, January 31, 2024

Course websites:

```
pages.cs.wisc.edu/~hasti/cs536
www.piazza.com/wisc/spring2024/compsci536
```

Programming Assignment 1

- test code due Sunday, Feb. 4 by 11:59 pm
- other files due Thursday, Feb. 8 by 11:59 pm

Last Time

- start scanning
- finite state machines
 - formalizing finite state machines
 - coding finite state machines
 - deterministic vs non-deterministic FSMs

Today

- non-deterministic FSMs
- equivalence of NFAs and DFAs
- regular languages
- regular expressions

Next Time

- regular expressions \rightarrow DFAs
- language recognition \rightarrow tokenizers
- scanner generators
- JLex

Recall

- scanner : converts a sequence of characters to a sequence of tokens
- scanner implemented using FSMs
- FSMs can be DFA or NFA

"Running" an NFA

To check if a string is in L(M) of NFA M, simulate set of choices it could make.

The string is in L(M) iff there is at least one sequence of transitions that

- consumes all input (without getting stuck) and
- ends in one of the final states

NFA and DFA are equivalent

Two automata *M* and *M*^{*} are equivalent iff $L(M) = L(M^*)$

Lemmas to be proven:

- **Lemma 1:** Given a DFA M, one can construct an NFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$
 - **Lemma 2:** Given an NFA *M*, one can construct a DFA M^* that recognizes the same language as *M*, i.e., $L(M^*) = L(M)$

Proving Lemma 2

- **Lemma 2:** Given an NFA *M*, one can construct a DFA M^* that recognizes the same language as *M*, i.e., $L(M^*) = L(M)$
- **Part 1:** Given an NFA *M* without ε -transitions, one can construct a DFA *M*^{*} that recognizes the same language as *M*
- **Part 2:** Given an NFA *M* with ε -transitions, one can construct a NFA *M*^{*} without ε -transitions that recognizes the same language as *M*

NFA without ε -transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA $M \rightarrow$ DFA M^* , use a single state in M^* to simulate sets of states in MSuppose M has |Q| states. Then M^* can have only up to 2^{Q} states. Why?

Given NFA M:

 ε -transitions **Example:** *xⁿ*, where *n* is even or divisible by 3 accept even to of x's Q1 XXX . ε Ο Х accepts H of Xs divisible by 3 n time: Ρ R1 Х ε R Х R2 useful for taking union of 2 FSMs

Eliminating *ɛ*-transitions

Goal: given NFA *M* with *ɛ*-transitions, construct an *ɛ*-free NFA *M** that is equivalent to *M* **Definition:** *epsilon closure*

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions

	eclose
Ρ	$\Sigma P, Q, R3$
Q	٤Q٤
R	ZRZ
Q1	2Q13
R1	2Ris
R2	2 k23

SEelose(5x)

Summary of FSMs

DFAs and NFAs are equivalent

• an NFA can be converted into a DFA, which can be implemented via the table-driven approach

ɛ-transitions do not add expressiveness to NFAs

• algorithm to remove *ɛ*-transitions

Regular Languages and Regular Expressions

Regular language

Any language recognized by an FSM is a regular language

Examples:

- single-line comments beginning with //
- hexadecimal integer literals in Java
- C/C++ identifiers

Regular expression (regex)

= a pattern that defines a regular language

regular language: (potentially infinite) set of strings

regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: { \mathcal{E} , ab, abab, ababab, abababab, ...} $\leftarrow \rightarrow$ (ab)*

Why do we need them?

- Each token in a programming language can be defined by a regular language
- Scanner-generator input = one regular expression for each token to be recognized by the scanner

→ regex's are inputs to scanner generator

Formal definition

A **regular expression** over an alphabet Σ is any of the following:

- Ø (the empty regular expression)
- **3**
- a (for any $a \in \Sigma$)

Moreover, if R_1 and R_2 are regular expressions over Σ , then so are: $R_1 | R_2$, $R_1 \cdot R_2$, R_1^*

Regular expressions (as an expression language)

regular expression = pattern describing a set of strings Precedence operands: single characters, epsilon f operators: alternation ("or"): a b marches a, marches b concatenation ("followed by"): a.b ab mothes ab catenation iteration ("Kleene star"): a* matches () or more a's Kleene closure, closure Lo E, a, aa, caa, ... high Conventions is a.a aa is aa* a+ L letter is a|b|c|d|...|y|z|A|B|...|Z 🕥 digit is 0|1|2|...|9 not(x) is all characters except x parentheses for grouping and overriding precedence, e.g., (ab)*

Example: single-line comments beginning with //

/not('\n')* '\n' Ine white

Example: hexadecimal integer literals in Java

- must start 0x or 0X
- followed by at least one hexadecimal digit (hexdigit)
- hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
- optionally can add long specifier (1 or L) at end

O(XIX) hexdigit * (EILL)

Example: C/C++ identifiers (with one added restriction)

- sequence of letters/digits/underscores
- cannot begin with a digit
- cannot end with an underscore