
Week 2(W) Page 1

CS 536 Announcements for Wednesday, January 31, 2024
Course websites:

pages.cs.wisc.edu/~hasti/cs536
www.piazza.com/wisc/spring2024/compsci536

Programming Assignment 1
• test code due Sunday, Feb. 4 by 11:59 pm
• other files due Thursday, Feb. 8 by 11:59 pm

Last Time
• start scanning
• finite state machines

• formalizing finite state machines
• coding finite state machines
• deterministic vs non-deterministic FSMs

Today
• non-deterministic FSMs
• equivalence of NFAs and DFAs
• regular languages
• regular expressions

Next Time
• regular expressions DFAs
• language recognition tokenizers
• scanner generators
• JLex

Recall
• scanner : converts a sequence of characters to a sequence of tokens
• scanner implemented using FSMs
• FSMs can be DFA or NFA

Creating a scanner

 token regex NFA DFA

scanner = to + to + to + to

 regex NFA DFA code

 scanner generator

Week 2(W) Page 2

NFAs, formally
finite state machine M = (Q, Σ, δ, q, F)

L(M) = the language of FSM M = set of all strings M accepts
Example:

"Running" an NFA
To check if a string is in L(M) of NFA M, simulate set of choices it could make.

The string is in L(M) iff there is at least one sequence of transitions that
• consumes all input (without getting stuck) and
• ends in one of the final states

Week 2(W) Page 3

NFA and DFA are equivalent
Two automata M and M* are equivalent iff L(M) = L(M*)
Lemmas to be proven:

Lemma 1: Given a DFA M, one can construct an NFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Proving Lemma 2
Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same

language as M, i.e., L(M*) = L(M)

Part 1: Given an NFA M without 𝜺𝜺-transitions, one can construct a DFA M* that recognizes
the same language as M

Part 2: Given an NFA M with 𝜺𝜺-transitions, one can construct a NFA M* without 𝜺𝜺-transitions
that recognizes the same language as M

Week 2(W) Page 4

NFA without 𝜺𝜺-transitions to DFA
Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA M DFA M*, use a single state in M* to simulate sets of states in M

Suppose M has |Q| states. Then M* can have only up to states.
Why?

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Example

Week 2(W) Page 5

NFA without 𝜺𝜺-transitions to DFA
Given NFA M:

Build new DFA M*
To build DFA: Add an edge in M* from state S* on character c to state T* if T* represents the
set of all states that a state in S* could possibly transition to on input c

𝜺𝜺-transitions
Example: xn, where n is even or divisible by 3

ε

ε

Week 2(W) Page 6

Eliminating 𝜺𝜺-transitions
Goal: given NFA M with 𝜺𝜺-transitions, construct an 𝜺𝜺-free NFA M* that is equivalent to M
Definition: epsilon closure

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions

 eclose

P

Q

R

Q1

R1

R2

ε

ε

ε

ε

Week 2(W) Page 7

Summary of FSMs
DFAs and NFAs are equivalent
• an NFA can be converted into a DFA, which can be implemented via the table-driven

approach

𝜺𝜺-transitions do not add expressiveness to NFAs
• algorithm to remove 𝜀𝜀-transitions

Regular Languages and Regular Expressions
Regular language
Any language recognized by an FSM is a regular language
Examples:

• single-line comments beginning with //
• hexadecimal integer literals in Java
• C/C++ identifiers
• {𝜀𝜀, ab, abab, ababab, abababab, …}

Regular expression
= a pattern that defines a regular language

regular language: (potentially infinite) set of strings
regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: {𝜺𝜺, ab, abab, ababab, abababab, …} (ab)*

Why do we need them?
• Each token in a programming language can be defined by a regular language

• Scanner-generator input = one regular expression for each token to be recognized by
the scanner

Formal definition
A regular expression over an alphabet Σ is any of the following:
• ∅ (the empty regular expression)
• ε
• a (for any a ∈ Σ)

Moreover, if R1 and R2 are regular expressions over Σ, then so are: R1 | R2 , R1 · R2 , R1*

Week 2(W) Page 8

Regular expressions (as an expression language)
regular expression = pattern describing a set of strings
operands: single characters, epsilon
operators:

 alternation ("or"): a | b

 concatenation ("followed by"): a.b ab

 iteration ("Kleene star"): a*

Conventions
aa is a.a
a+ is aa*
letter is a|b|c|d|…|y|z|A|B|…|Z
digit is 0|1|2|…|9
not(x) is all characters except x
parentheses for grouping and overriding precedence, e.g., (ab)*

Example: single-line comments beginning with //

Example: hexadecimal integer literals in Java
• must start 0x or 0X
• followed by at least one hexadecimal digit (hexdigit)

• hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
• optionally can add long specifier (l or L) at end

Example: C/C++ identifiers (with one added restriction)
• sequence of letters/digits/underscores
• cannot begin with a digit
• cannot end with an underscore

	CS 536 Announcements for Wednesday, January 31, 2024
	NFAs, formally
	"Running" an NFA
	NFA and DFA are equivalent
	Proving Lemma 2
	NFA without 𝜺-transitions to DFA
	Example
	NFA without 𝜺-transitions to DFA
	𝜺-transitions
	Eliminating 𝜺-transitions
	Summary of FSMs
	Regular Languages and Regular Expressions
	Regular expressions (as an expression language)

