
Week 3 (M) Page 1

CS 536 Announcements for Monday, February 5, 2024
Programming Assignment 1
• symbol table files due Thursday, Feb. 8 by 11:59 pm

Homework 0
• available in schedule
• practice with DFAs, regular expressions

Homework 1
• available tomorrow
• practice with NFADFA translation, JLex

Last Time
• non-deterministic FSMs
• equivalence of NFAs and DFAs
• regular languages
• regular expressions

Today
• regular expressions  DFAs
• language recognition  tokenizers
• scanner generators
• JLex

Next Time
• CFGs

Recall

 token regex NFA DFA

scanner = to + to + to + to

 regex NFA DFA code

 scanner generator

Week 3 (M) Page 2

From regular expressions to NFAs
Overview of the process
• Conversion of literals and epsilon

• Conversion of operators

Regex to NFA rules
Rules for operands

Suppose A is a regex with NFA:

Rules for alternation A|B

Week 3 (M) Page 3

Regex to NFA rules
Rules for catenation A.B

Rules for iteration A*

Tree representation of a regex
Consider regex: (letter | '_') (letter | '_' | digit)*

Week 3 (M) Page 4

Regex to DFA
We now can do:

We can add one more step: optimize DFA

Theorem: For every DFA M, there exists a unique equivalent smallest DFA M* that
recognizes the same language as M.

To optimize:
• remove unreachable states

• remove dead states

• merge equivalent states

But what's so great about DFAs?

Recall: state-transition function (δ) can be expressed as a table
 very efficient array representation

 efficient algorithm for running (any) DFA
s = start state
while (more input){
 c = read next char
 s = table[s][c]
}
if s is final, accept
else reject

What else do we need?

FSMs – only check for language membership of a string
scanner needs to
• recognize a stream of many different tokens using the longest match
• know what was matched

Week 3 (M) Page 5

Table-driven DFA  tokenizer
Idea: augment states with actions that will be executed when state is reached

Consider: (letter)(letter | digit)*

Problem:

Problem:

Scanner Generator Example

Language description:
consider a language consisting of two
statements
• assignment statements: ID = expr
• increment statements: ID += expr

where expr is of the form:

• ID + ID
• ID ^ ID
• ID < ID
• ID <= ID

and ID are identifiers following C/C++
rules (can contain only letters, digits, and
underscores; can't start with a digit)

Tokens:

Token Regular expression
ASSIGN

INCR

PLUS

EXP

LESSTHAN

LEQ

ID

Week 3 (M) Page 6

Combined DFA

State-transition table

 = + ^ < _ letter digit EOF
none

of
these

S0

 ret
ASSIGN A ret EXP B C C ret EOF

A

ret INC put 1 back, ret
PLUS

B

 ret LEQ put 1 back, ret
LESSTHAN

C

 put 1 back,
ret ID

 C C C put 1 back,

ret ID

do {
 read char
 perform action / update state
 if (action was to return a token)
 start again in start state
} while not(EOF or stuck)

Week 3 (M) Page 7

Lexical analyzer generators
(aka scanner generators)

Formally define transformation from regex to scanner

Tools written to synthesize a lexer automatically

• Lex : UNIX scanner generator, builds scanner in C
• Flex : faster version of Lex
• JLex : Java version of Lex

JLex
Declarative specification
• you don't tell JLex how to scan / how to match tokens
• you tell JLex what you want scanned (tokens) & what to do when a token is matched

Input: set of regular expressions + associated actions

Output: Java source code for a scanner

Format of JLex specification
3 sections separated by %%
• user code section
• directives
• regular expression rules

Regular expression rules section
Format: <regex>{code} where <regex> is a regular expression for a single token
• can use macros from Directives section – surround with curly braces { }
• characters represent themselves (except special characters)
• characters inside " " represent themselves (except \")
• . matches anything

Regular expression operators: | * + ? ()

Character class operators: - ^ \

Week 3 (M) Page 8

JLex example
// This file contains a complete JLex specification for a very
// small example.

// User Code section: For right now, we will not use it.

%%

DIGIT= [0-9]
LETTER= [a-zA-Z]
WHITESPACE= [\040\t\n]

%state SPECIALINTSTATE

%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol

%eofval{
System.out.println("All done");
return null;
%eofval}

%line

%%

({LETTER}|"_")({DIGIT}|{LETTER}|"_")* {
 System.out.println(yyline+1 + ": ID "
 + yytext()); }

"=" { System.out.println(yyline+1 + ": ASSIGN"); }
"+" { System.out.println(yyline+1 + ": PLUS"); }
"^" { System.out.println(yyline+1 + ": EXP"); }
"<" { System.out.println(yyline+1 + ": LESSTHAN"); }
"+=" { System.out.println(yyline+1 + ": INCR"); }
"<=" { System.out.println(yyline+1 + ": LEQ"); }
{WHITESPACE}* { }
. { System.out.println(yyline+1 + ": bad char"); }

Using scanner generated by JLex in a program
// inFile is a FileReader initialized to read from the
// file to be scanned
Yylex scanner = new Yylex(inFile);
try {
 scanner.next_token();
} catch (IOException ex) {
 System.err.println(
 "unexpected IOException thrown by the scanner");
 System.exit(-1);
}

	CS 536 Announcements for Monday, February 5, 2024
	From regular expressions to NFAs
	Regex to NFA rules
	Regex to NFA rules
	Tree representation of a regex
	Regex to DFA
	Table-driven DFA (tokenizer
	Scanner Generator Example
	Combined DFA
	State-transition table
	Lexical analyzer generators (aka scanner generators)
	JLex
	Regular expression rules section
	JLex example

