CS 536 Announcements for Monday, February 5, 2024

Programming Assignment 1
e symbol table files due Thursday, Feb. 8 by 11:59 pm

Homework 0
e available in schedule
e practice with DFAs, regular expressions

Homework 1
e Qavailable tomorrow
e practice with NFA->DFA translation, JLex

Last Time
e non-deterministic FSMs
e equivalence of NFAs and DFAs
e regular languages
e regular expressions

Today

e regular expressions - DFAs

e language recognition - tokenizers
e scanner generators
[]

JLex
Next Time
e CFGs
Recall
\o.sd -c\me/*""““ / oug timt
token regex NFA DFA
scanner = to + | to + | to + | to
regex NFA DFA code
scanner generator
Week 3 (M)

\QS'? MNon

&—taboq

Page 1

From regular expressions to NFAs
Overview of the process
e Conversion of literals and epsilon —= CRY Q\@ FA’Q

e Conversion of operators

-~ Coavet bQo:'omA,; s NPA>
- '\ait\ NFA¢

Regex to NFA rules
Rules for operands

LN
Likerad Yo! 0—@

e,e'a(\o“ t -’70—247@

Suppose A is a regex with NFA:

Conversy <0 O,JL, 1 Gl State
A OT<% - A T
=0-- - =) ~0.... O

@)

"
L MoV TN2s0 nct\-'gtm\

Rules for alternation A|B

&——MM :A‘SB m(\vg\'\m\

i/ﬁ 3 @
< B_/

Week 3 (M) Page 2

Regex to NFA rules
Rules for catenation A.B Make m!\-%ncv\

l 4
=0 IOk

“ole von-King

Rules for iteration A*

\7@/&‘_ ‘-“Z@ "
\ ¢ \Whoet oot AFT

Cerove, AWy edud,

Tree representation of a regex

Consider regex: (letter|' ") (letter|' '] digit)*

Week 3 (M) Page 3

Regex to DFA
We now can do:

oG — NFAwIe-:’ NFAW/O?’/"?' DFA

We can add one more step: optimize DFA —————-—J

Theorem: For every DFA M, there exists a unique equivalent smallest DFA M* that

recognizes the same language as M. E
TS M Lo> Sew exe b o SRartes
To optimize:

e remove unreachable states > Cont %G-C tong'\ St SWe
e remove dead states S Con'x ‘Qz"' o G\QQN,\\ St Qﬂ)w\ '\.g

\
e merge equivalent states

LS S RConSEo, (ou-ﬂ ol Same \c)odlb

But what's so great about DFAs?
Recall: state-transition function (8) can be expressed as a table

=> very efficient array representation \D C
71
' S gq' 1 61' \
: — N .
- ¢ 5L % > |

=> efficient algorithm for running (any) DFA

s = start state
while (more input) {
c = read next char

S table([s] [c]

}
if s is final, accept
else reject

What else do we need?
FSMs — only check for language membership of a string

scanner needs to
e recognize a stream of many different tokens using the longest match
e know what was matched

Week 3 (M) Page 4

Table-driven DFA -> tokenizer
Idea: augment states with actions that will be executed when state is reached

Consider: (letter)(letter | digit)* ety l ‘9N

L L,0 —
~&—@Y S | comen 1D a—taken

Problem: DOn"\ oprt WMJ\ @ =7
L

S)— LD Stove \N'Wh 0
1 1o 1) 4
@ () B2 ‘??’w\) Purt \omik,
5 loNai= 7 A doay
0eAwn \ O

Problem: ¢\ G0 W& ‘\QA\ ‘?\w& Inad®
Ac-t\\ow, 1\014\“

= QAL G toven
= Q¥ back o ooty

Scanner Generator Example

EOF 5 modl 45 o\ ghaboer 2

Language description: Tokens:

consider a language consisting of two

statements Token Regular expression
e assignment statements: ID = expr ASSIGN W —

e increment statements: ID += expr =
INCR LR |
here is of the form:

WHETE expr] PLUS W4 il
e ID + ID EXP N Al
e ID ~ ID N
e ID < ID LESSTHAN Z"
e ID <= ID LEQ nwg="

and 1D are identifiers following C/C++ ID

rules (can contain only letters, digits, and
underscores; can't start with a digit)

Week 3 (M)

(learer\ '\ (\eme."\ b \350("\%5

Page 5

Combined DFA
A(:\'\‘o«\g
3 ceturn ASSIGN
gz" erum EXP
@ 4,5 cefuen ING
Sy put 1 badk) ferfutn PLLS

35" Cetuen ILEQ
%Q‘- Quee A ol , € e

LESSTHAN
Cerven \D
State-transition table
none
= + A < _ | letter | digit EOF of
these
ret
So ASSIGN A retEXP| B C C ret EOF
put 1 back, ret
A [ret INC PLUS B AI
put 1 back, ret
B | retlEQ | 'eggTHAN)
put 1 back, put 1 back,
C C C C
ret ID — - ret ID —_—
do {

read char
perform action / update state
if (action was to return a token)

start again in start state
} while not (EOF or stuck)

Week 3 (M) Page 6

Lexical analyzer generators
(aka scanner generators)

Formally define transformation from regex to scanner

Tools written to synthesize a lexer automatically

e Lex : UNIX scanner generator, builds scannerin C
e Flex : faster version of Lex
e JlLex: Java version of Lex

JLex

Declarative specification cr\o n- Qooge,c\urg\
e you don't tell JLex how to scan / how to match tokens
e you tell JLex what you want scanned (tokens) & what to do when a token is matched

Input: fitOf regular expressions + associated actions,
-

Y VoA _,—-.‘ o‘\
SLex sptakietio 3\o.x 63 XN2Z Be)(

Output: Java source code for a scanner

s xyz .&\e&.so«f/\-’l CompilL 1o oyé4

Format of JLex specification \{\\\ (N c)m‘ag
3 sections separated by %% _ . .
e user code section CFor: tedees AP SROloum

o directives (N 0“0‘\
e regular expression rules
— NER_T%eA & P
X \
Regular expression rules section WU foleen 0(‘ \n peR

Format: <regex>{code} where <regex> is a regular expression for a single token
e can use macros from Directives section — surround with curly braces { }
e characters represent themselves (except special characters)
e characters inside " " represent themselves (except \")
e . matches anything

Regular expression operators: | * + ? ()

Character class operators: - » \

Week 3 (M) Page 7

JLex example

// This file contains a complete JLex specification for a very
// small example.

// User Code section: For right now, we will not use it.
DIGIT= [0-9]
LETTER= [a—zA-7]

WHITESPACE= [\040\t\n]
$state SPECIALINTSTATE

$implements java cup.runtime.Scanner
sfunction next token
stype java cup.runtime.Symbol

$eofval(
System.out.println ("All done");
return null;

$eofval}

%1line
({LETTER}I"_")({DIGIT}I{LETTER}I"_")* {
System.out.println(yyline+l + ": ID "
+ yytext()); }

n=" { System.out.println(yyline+1l + ": ASSIGN"); }
m4n { System.out.println(yyline+1l + ": PLUS"); }
nmamn { System.out.println(yyline+1l + ": EXP"); }
nn { System.out.println(yyline+1l + ": LESSTHAN"); }
"y=" { System.out.println(yyline+1l + ": INCR"); }
n=" { System.out.println(yyline+1l + ": LEQ"); }
{WHITESPACE} * {1

{ System.out.println(yyline+1l + ": bad char"); }

Using scanner generated by JLex in a program

// inFile 1s a FileReader initialized to read from the
// file to be scanned
Yylex scanner = new Yylex(inFile);
try |
scanner.next token();
} catch (IOException ex) {
System.err.println (
"unexpected IOException thrown by the scanner");
System.exit (-1);
}

Week 3 (M)

Page 8

	CS 536 Announcements for Monday, February 5, 2024
	From regular expressions to NFAs
	Regex to NFA rules
	Regex to NFA rules
	Tree representation of a regex
	Regex to DFA
	Table-driven DFA (tokenizer
	Scanner Generator Example
	Combined DFA
	State-transition table
	Lexical analyzer generators (aka scanner generators)
	JLex
	Regular expression rules section
	JLex example

