
Week 4 (M) Page 1

CS 536 Announcements for Monday, February 12, 2024
Programming Assignment 2 – due Tuesday, February 20
Last Time
• why regular expressions aren't enough
• CFGs

• formal definition
• examples
• language defined by a CFG

Today
• Makefiles
• parse trees
• resolving ambiguity
• expression grammars
• list grammars

Next Time
• syntax-directed translation

Makefiles
Basic structure

<target>: <dependency list>
 <command to satisfy target)

Example
Example.class: Example.java IO.class
 javac Example.java

IO.class: IO.java
 javac IO.java

Make creates an internal dependency graph
• a file is rebuilt if one of its dependencies changes

Variables – for common configuration values to use throughout your makefile
Example

JC = /s/std/bin/javac
JFLAGS = -g

Example.class: Example.java IO.class
 $(JC) $(JFLAGS) Example.java

IO.class: IO.java
 $(JC) $(JFLAGS) IO.java

Week 4 (M) Page 2

Phony targets
• target with no dependencies
• use make to run commands:

Example
clean:
 rm -f *.class

Programming Assignment 2
Modify:
• base.jlex
• P2.java
• Makefile

Makefile

testing - add more here to run your tester and compare
its results to expected results

test:
 java -cp $(CP) P2
 diff allTokens.in allTokens.out

clean up

clean:
 rm -f *~ *.class base.jlex.java

cleantest:
 rm -f allTokens.out

Running the tester
royal-12(53)% make test
java -cp ./deps:. P2
3:1 ****ERROR**** ignoring illegal character: a
diff allTokens.in allTokens.out
3d2
< a
make: *** [Makefile:40: test] Error 1

Week 4 (M) Page 3

CFG review
formal definition: CFG G = (N, ∑, P, S)

CFG generates a string by applying
productions until no non-terminals remain

⟹+ means "derives in 1 or more steps"

language defined by a CFG G
L(G) = { w | s ⟹+ w} where
s = start is the start non-terminal of G, an
w = sequence consisting of (only) terminal symbols or ε

Parse trees
= way to visualize a derivation

To derive a string (of terminal symbols):
• set root of parse tree to start symbol

• repeat

• find a leaf non-terminal x
• find production of the form x  α
• "apply" production: symbols in α become the children of x

• until there are no more leaf non-terminals

Derived sequence determined from leaves, from left to right

Week 4 (M) Page 4

Parse tree example
Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

Derivation order
Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

Leftmost derivation :

Rightmost derivation :

Week 4 (M) Page 5

Expression Grammar Example

1) expr  INTLIT
2) | expr PLUS expr
3) | expr TIMES expr
4) | LPAREN expr RPAREN

Derive: 4 + 7 * 3

For grammar G and string w, G is ambiguous if there is

OR

OR

Week 4 (M) Page 6

Grammars for expressions
Goal: write a grammar that correctly reflects precedences and associativities

Precedence
• use different non-terminal for each precedence level
• start by re-writing production for lowest precedence operator first

Example
1) expr  INTLIT
2) | expr PLUS expr
3) | expr TIMES expr
4) | LPAREN expr RPAREN

Week 4 (M) Page 7

Grammars for expressions (cont.)
What about associativity? Consider 1 + 2 + 3

Definition: recursion in grammars

A grammar is recursive in non-terminal x if
x ⟹+ α x γ for non-empty strings of symbols α and γ
A grammar is left-recursive in non-terminal x
if x ⟹+ x γ for non-empty string of symbols γ
A grammar is right-recursive in non-terminal x if
x ⟹+ α x for non-empty string of symbols α

In expression grammars
for left associativity, use left recursion
for right associativity, use right recursion

Example

Week 4 (M) Page 8

List grammars
Example a list with no separators, e.g., A B C D E F G

Another ambiguous example
stmt  IF cond THEN stmt
 | IF cond THEN stmt ELSE stmt
 | . . .

Given this sequence in this grammar: if a then if b then s1 else s2
How would you derive it?

	CS 536 Announcements for Monday, February 12, 2024
	Makefiles
	Programming Assignment 2
	CFG review
	Parse trees
	Parse tree example
	Derivation order
	Expression Grammar Example
	Grammars for expressions
	Grammars for expressions (cont.)
	List grammars
	Another ambiguous example

