
Week 5 (M) Page 1

CS 536 Announcements for Monday, February 19, 2024
Programming Assignment 2
• due Tuesday, February 20

Last Time
• syntax-directed translation
• abstract syntax trees

Today
• implementing ASTs

Next Time
• Java CUP

SDT review
SDT = translating from a sequence of tokens into a sequence of actions/other form,

based on underlying syntax

To define a syntax-directed translation
• augment CFG with translation rules

• define translation of LHS non-terminal as a function of:

• constants

• translations of RHS non-terminals

• values of terminals (tokens) on RHS

To translate a sequence of tokens using SDT (conceptually)
• build parse tree
• use translation rules to compute translation of each non-terminal (bottom-up)
• translation of sequence of tokens = translation of parse tree's root non-terminal

For parsing, we'll need to translate tokenized stream to abstract-syntax tree (AST)

Week 5 (M) Page 2

Example
expr expr + term
 | term
term term * factor
 | factor
factor INTLIT
 | (expr)

AST for parsing
We've been showing the translation in two steps:

In practice we'll do

Why have an AST?

Week 5 (M) Page 3

AST implementation

Define a class for each kind of AST node

Create a new node object in some rules

• new node object is the value of LHS.trans

• fields of node object come from translations of RHS non-terminals

Week 5 (M) Page 4

Translation rules to build ASTs for expressions
CFG Translation rules
expr expr + term expr1.trans =
 | term expr.trans =

term term * factor term1.trans =
 | factor term.trans =

factor INTLIT factor.trans =
 | (expr) factor.trans =

Week 5 (M) Page 5

ASTs for non-expressions
Example

void foo(int x, int y) {
 if (x == y) {
 return;
 }
 while (x < y) {
 cout << "hello";
 x = x + 1;
 }
 return;
}

Week 5 (M) Page 6

ASTs for lists
CFG
idList idList COMMA ID
 | ID

Week 5 (M) Page 7

The bigger picture
Scanner
• Language abstraction: regular expressions

• Output: token stream

• Tool: JLex

• Implementation: interpret DFA using table (for δ),
recording most_recent_accepted_position & most_recent_token

Parser
• Language abstraction:

• Output:
• Tool:
• Implementation:

	CS 536 Announcements for Monday, February 19, 2024
	SDT review
	Example
	AST for parsing
	AST implementation
	Translation rules to build ASTs for expressions
	ASTs for non-expressions
	ASTs for lists
	The bigger picture

