CS 536 Announcements for Wednesday, February 28, 2024

Midterm 1, Thursday, February 29, 7:30 - 9 pm, S429 Chemistry

Last Time

review for Midterm 1

Today

- approaches to parsing
- bottom-up parsing
- CFG transformations
 - removing useless non-terminals
 - Chomsky normal form (CNF)
- CYK algorithm

Next Time

- wrap up CYK
- classes of grammars
- top-down parsing

In addition to printed copies of the overheads, there are full-sized versions of the diagrams for running the CYK algorithm available

Parsing: two approaches

Top-down / "goal driven"

- start at start nonterminal
- grow parse tree downward until entire sequence is matched

Bottom-up / "data driven"

- start with terminals (sequence)
- generate ever larger subtrees until get to single tree whose root is the start nonterminal

(note: parse tree is upside down)

Example:

CFG: expr → expr + term | term

term → term * ID | ID

Derive: ID + ID

Week 6 (W)

Cocke - Younger - Kasami (CYK) algorithm

- Works bottom-up
- · Time complexity: O(n3) n = length of input (# of tokens in sequence)
- Requires grammar to be in Chomsky Normal Form

Chomsky Normal Form (CNF)

- all rules must be in one of two forms
 - . x → T (T is a terminal)
 - $x \rightarrow ab$
- only rule allowed to derive epsilon is the start symbol s

Why CNF is helpful?

- . nonterminals in pairs -> can think of a subtree as a subspan
- nonterminals (except start) can't derive epsilon own subspan has at least

CYK: Dynamic Programming

x > T -> forms leaf of parse tree x > ab -> binary intoise node of parse tree

Running CYK

Track every viable subtree from leaf to root.

All subspans for a sequence (string) with 6 terminals

Week 6 (W) Page 3

CYK Example

Week 6 (W) Page 4

Eliminating useless nonterminals

Avoid unnecessary work – remove useless rules

- 1. If a nonterminal cannot derive a sequence of terminal symbols, then it is useless
- 2. If a nonterminal cannot be derived from the start symbol, then it is useless

Nonterminals that cannot derive a sequence of terminal symbols

```
mark all terminal symbols
repeat
    if all symbols on the RHS of a production are marked
        mark the LHS nonterminal (everywhere is shows up)
until no more nonterminals can be marked
```

Example

Nonterminals that cannot be derived from the start symbol

```
mark the start symbol
repeat
    if the LHS of a production is marked
        mark all RHS nonterminals (wherever they show up)
until no more nonterminals can be marked
```

Example

Week 6 (W) Page 5

Chomsky Normal Form

Four steps

- eliminate epsilon productions
- eliminate unit productions
- fix productions with terminal on RHS (along worth stuff)
- fix productions with > 2 nonterminals on RHS

572 => 576 97...s... => 97...s..

ok to have start 57 & but if so con't have start on RHS

Eliminate (most) epsilon productions

If nonterminal a immediately derives epsilon

-make copies of all rules with a on RHS & delete all combinations of a in copies

Example 1

$$\begin{array}{c}
f \rightarrow ID(a) \\
a \rightarrow \varepsilon \\
a \rightarrow n \\
n \rightarrow ID
\end{array}$$

$$n \rightarrow \mathbf{ID}, n$$

Example 2

$$\begin{array}{c} x \rightarrow a X a Y a \\ a \rightarrow \varepsilon \\ a \rightarrow 7 \end{array}$$

Chomsky Normal Form (cont.)

Eliminate unit productions

Productions of the form $a \rightarrow b$ are called *unit productions*

If this is the only rule with a on LHS, place be anywhere a could have appeared a remove unto production

Example

$$f \rightarrow ID(a)$$

$$f \rightarrow ID()$$

$$a \rightarrow n$$

$$n \rightarrow ID$$

$$n \rightarrow ID, n$$

$$f \rightarrow ID, n$$

If there are multiple rules with a on LHS, for each rule of the form b >> 8, add a >> 8 & remove a >> b

Week 6 (W) Page 7

Chomsky Normal Form (cont.)

Fix RHS nonterminals

For productions with terminals and something else on the RHS

- for terninal T, add sule x 7T where x is a new non-tornial - replace T with x in those productions

Example

$$f \rightarrow ID(n)$$

$$f \rightarrow ID()$$

$$n \rightarrow ID$$

$$n \rightarrow ID, n$$

For productions with > 2 nonterminals on the RHS

- replace all but 1st monterm with new montem

- add rule from new nontern to replaced nontern sequence

- repeat

Example