CS 536 Announcements for Wednesday, March 6, 2024

Last Time

- wrap up CYK
- classes of grammars
- top-down parsing

Today

- review grammar transformations
- building a predictive parser
- FIRST and FOLLOW sets

Next Time

predictive parsing and syntax-directed translation

LL(1) Predictive Parser

Predict the parse tree top-down

Parser structure

- 1 token lookahead
- parse/selector table
- stack tracking current parse tree's frontier

Necessary conditions

- left-factored
- free of left-recursion

Review of LL(1) grammar transformations

Necessary (but not sufficient conditions) for LL(1) parsing

- free of left recursion no left-recursive rules
- left-factored no rules with a common prefix, for any nonterminal

Why left-recursion is a problem

Outside/high-level view

CFG snippet: xlist → xlist X | X

Current parse tree: xlist Current token: X

Inside/algorithmic-level view

CFG snippet: xlist $\rightarrow x$ list $X \mid X$

Current parse tree: xlist Current token: X

Removing left-recursion (review)

Replace

$$A \rightarrow A \alpha \mid \beta$$

with

$$A \to \beta A'$$

$$A' \to \alpha A' \mid \varepsilon$$

where β does not start with A (or may be ϵ)

Preserves the language (as a list of α 's, starting with a β), but uses right recursion

Example

xlist
$$\rightarrow$$
 xlist X | ϵ

Left factoring (review)

Removing a common prefix from a grammar

Replace

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | ... | \alpha \beta_n | \gamma_1 | \gamma_2 | ... | \gamma_m$$

with

$$A \rightarrow \alpha A' \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_m$$

$$A' \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

where β_i and γ_i are sequence of symbols with no common prefix

Note: γ_i may not be present, and one of the β_i may be ϵ

Idea: combine all "problematic" rules that start with α into one rule $\alpha A'$ A' now represents the suffix of the problematic rules

Example 1

$$\exp \rightarrow \langle A \rangle | \langle B \rangle | \langle C \rangle | D$$

Example 2

Building the parse table

Goal: given production $lhs \rightarrow rhs$, determine what terminals would lead us to choose that production

- what terminals could rhs possibly start with?
- What terminals could possibly come after lhs?

Idea: FIRST(*rhs*) = set of terminals that begin sequences derivable from *rhs*

Suppose top-of-stack symbol is nonterminal p and the current token is A and we have

- Production 1: $p \rightarrow \alpha$
- Production 2: $p \rightarrow \beta$

FIRST lets us disambiguate:

- if $\mathbf{A} \in FIRST(\alpha)$, then
- if $\mathbf{A} \in \mathsf{FIRST}(\beta)$, then
- if A is in just one of them, then

FIRST sets

FIRST(α) is the set of terminals that begin the strings derivable from α , and also, if α can derive ϵ , then ϵ is in FIRST(α).

Formally,

 $FIRST(\alpha) =$

For a symbol X

- if X is terminal: FIRST(X) = {X}
- if X is ε : FIRST(X) = {ε}
- if X is nonterminal: for each production X → Y₁Y₂Y₃..Y_n
 - put FIRST(Y₁) ε into FIRST(X)
 - if ε is in FIRST(Y₁), put FIRST(Y₂) ε into FIRST(X)
 - if ε is in FIRST(Y₂), put FIRST(Y₃) ε into FIRST(X)
 - ...
 - if ε is in FIRST(Y_i) for all i, put ε into FIRST(X)

Example

Original CFG expr → expr + term | term term → term * factor | factor

Transformed CFG

term →	term * tactor		
fa	ictor		
factor →	exponent ^ factor		
e	xponent		
exponent → INTLIT			
[(expr)		

	FIRST	FOLLOW
expr		
expr'		
term		
term'		
factor		
factor'		
exponent		

		FIRST
expr	→ term expr'	
expr'	→ + term expr'	
expr'	→ ε	
term	→ factor term'	
term'	→ * factor term'	
term'	⇒ ε	
factor	→ exponent factor'	
factor'	→ ^ factor	
factor'	→ ε	
exponent → INTLIT		
exponer	nt → (expr)	

Computing $FIRST(\alpha)$ (continued)

Extend FIRST to strings of symbols $\boldsymbol{\alpha}$

Let $\alpha = Y_1Y_2Y_3...Y_n$

- put FIRST(Y₁) ε into FIRST(α)
 - if ε is in FIRST(Y₁), put FIRST(Y₂) ε into FIRST(α)
 - if ε is in FIRST(Y₂), put FIRST(Y₃) ε into FIRST(α)
 - ..
 - if ε is in FIRST(Y_i) for all i, put ε into FIRST(α)

Given two productions for nonterminal p

- Production 1: $p \rightarrow \alpha$
- Production 2: $p \rightarrow \beta$

FOLLOW sets

For single nonterminal a, FOLLOW(a) is the set of terminals that can appear immediately to the right of a

Formally,

FOLLOW(a) =

Computing FOLLOW sets

To build FOLLOW(a)

- if a is the start non-term, put EOF in FOLLOW(a)
- for each production $x \rightarrow \alpha$ a β
 - put FIRST(β) ϵ into FOLLOW(a)
 - if ε is in FIRST(β), put FOLLOW(x) into FOLLOW(a)
- for each production $x \rightarrow \alpha$ a
 - put FOLLOW(x) into FOLLOW(a)

Building the parse table

```
for each production x \rightarrow \alpha {
	for each terminal T in FIRST(\alpha) {
	put \alpha in table[x][T]
	}
	if \epsilon is in FIRST(\alpha) {
	for each terminal T in FOLLOW(x) {
	put \alpha in table[x][T]
	}
	}
```