CS 536 Announcements for Wednesday, March 6, 2024

Last Time

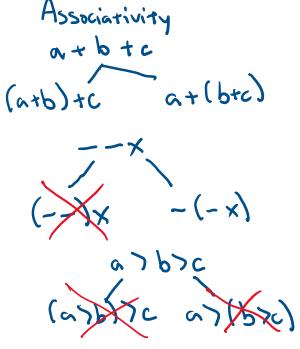
- wrap up CYK
- classes of grammars
- top-down parsing

Today

- review grammar transformations
- building a predictive parser
- FIRST and FOLLOW sets

Next Time

• predictive parsing and syntax-directed translation



LL(1) Predictive Parser

Predict the parse tree top-down

Parser structure

- 1 token lookahead
- parse/selector table
- stack tracking current parse tree's frontier

Necessary conditions

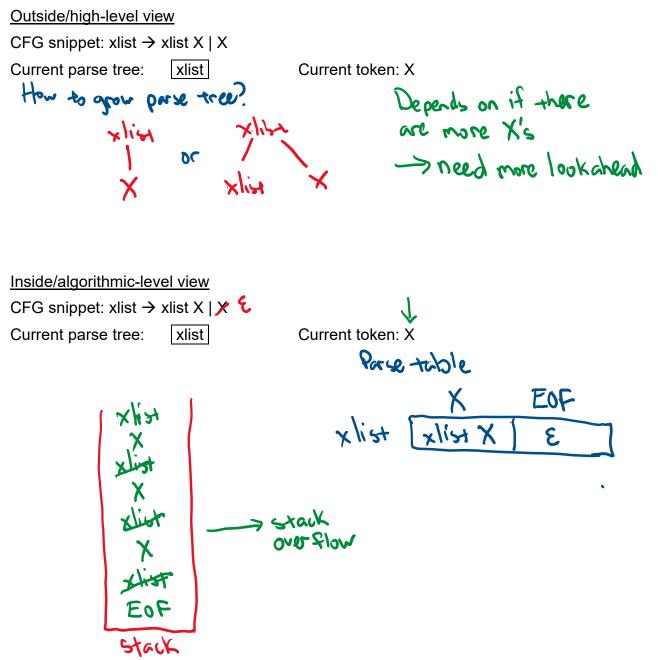
- left-factored
- free of left-recursion

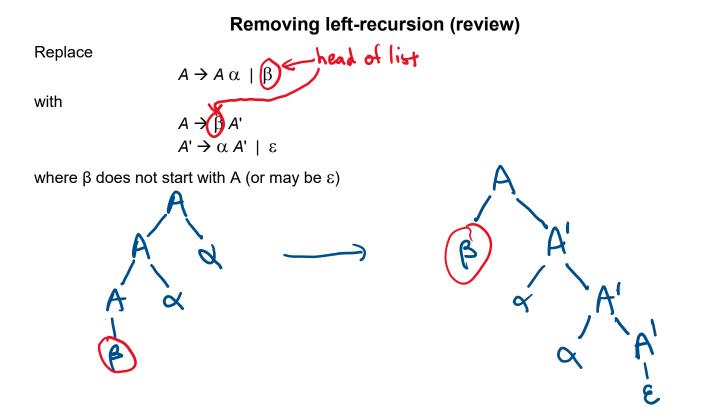
Review of LL(1) grammar transformations

Necessary (but not sufficient conditions) for LL(1) parsing

- free of left recursion no left-recursive rules
- left-factored no rules with a common prefix, for any nonterminal

Why left-recursion is a problem





Preserves the language (as a list of α 's, starting with a β), but uses right recursion

Example xlist > xlist X (E) Xlist -> Xlist xlist -> E xlist xlist -> X xlist | E change xlist to xlist

Left factoring (review)

Removing a common prefix from a grammar

Replace

with

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \dots | \alpha \beta_n | Y_1 | Y_2 | \dots | Y_m$$
$$A \rightarrow \alpha A' | Y_1 | Y_2 | \dots | Y_m$$
$$A' \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

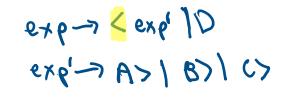
where β_i and γ_i are sequence of symbols with no common prefix

Note: γ_i may not be present, and one of the β_i may be ϵ

Idea: combine all "problematic" rules that start with α into one rule $\alpha A'$ A' now represents the suffix of the problematic rules

Example 1

exp $\rightarrow \langle A \rangle \langle B \rangle \langle C \rangle \rangle$



Example 2

stmt \rightarrow ID ASSIGN exp | ID (elist) | return

exp → INTLIT | ID

elist \rightarrow exp | exp COMMA elist

Building the parse table

Goal: given production *lhs* \rightarrow *rhs*, determine what terminals would lead us to choose that production

ie, figure out T such that table[lhs][T] = rhs - also where torninals could indicate an error are this point?

- what terminals could *rhs* possibly start with? •
- What terminals could possibly come after *lhs*?

Idea: FIRST(rhs) = set of terminals that begin sequences derivable from rhs

Suppose top-of-stack symbol is nonterminal p and the current token is A and we have

- Production 1: $p \rightarrow \alpha$
- Production 2: $p \rightarrow \beta$ •

FIRST lets us disambiguate:

- if A ∈ FIRST(α), then production 1 is a viable choice
- if $A \in FIRST(\beta)$, then production 2 is a viable choice
- if A is in just one of them, then we can predict which production to use

FIRST sets

FIRST(α) is the set of terminals that begin the strings derivable from α , and also, if α can derive ε , then ε is in FIRST(α).

ε, then ε is in FIRST(α). Formally, FIRST(α) = $\xi T | (T \in Z \land d =)^* T \beta) \vee (T = \epsilon \land d =)^* \epsilon)$

For a symbol X

- if X is terminal: FIRST(X) = {X}
- if X is ε : FIRST(X) = { ε } •
- if X is nonterminal : for each production $X \rightarrow Y_1Y_2Y_3..Y_n$ •

 - if ε is in FIRST(Y₂), put FIRST(Y₃) ε into FIRST(X)

 - if ε is in FIRST(Y_i) for all i, put ε into FIRST(X)

 $\begin{array}{l} X \text{ is } \epsilon : \text{FIRST}(X) = \{\epsilon\} \\ \hline X \text{ is nonterminal : for each production } X \rightarrow Y_1Y_2Y_3..Y_n \\ \bullet \text{ put FIRST}(Y_1) - \epsilon \text{ into FIRST}(X) \\ \bullet \text{ if } \epsilon \text{ is in FIRST}(Y_1), \text{ put FIRST}(Y_2) - \epsilon \text{ into FIRST}(X) \\ \end{array}$ FIRST SET

Example

<u>Original CFG</u>		
expr →	expr + term	
term		
term →	term * factor	
/ fa	ctor	
factor \rightarrow	exponent ^ factor	
exponent		
exponent → INTLIT		
(expr)		
1.	- /	

Transformed CFG expr-7 term expr expr-7 term expr expr-7 term expr expr-7 term expr le term 7 factor term term' 7 x factor term factor 9 exponent faceor factor 9 A factor 1 E exponent - INTLIT 1 (expr)

	FIRST	FOLLOW	
expr	INTLIT (EOF)	
expr'	+ E	=FOLLOW(expr) EOF)	
term	INTLIT (+ EOF)	
term'	3 *	= FOLLOV (term) + EOF)	
factor	INTLIT (X + EOF)	
factor'	1 E	\star + EF)	
exponent	INTLIT ($n \times + EOP$)	

		FIRST
expr	\rightarrow term expr'	INTLIT (
expr'	\rightarrow + term expr'	+
expr'	→ ε	3
term	\rightarrow factor term'	INTLIT (
term'	\rightarrow * factor term'	*
term'	→ ε	٤
factor	\rightarrow exponent factor'	INTLIT (
factor'	\rightarrow ^ factor	Λ
factor'	$\rightarrow \epsilon$	لى لى
exponer	it \rightarrow INTLIT	INTLIT
exponer	$it \rightarrow (expr)$	

•

Computing FIRST(α) (continued)

Extend FIRST to strings of symbols α

- want to define FIRST for all RHS of productions

Let $\alpha = Y_1Y_2Y_3...Y_n$

- put FIRST(Y₁) ε into FIRST(α)
 - if ε is in FIRST(Y₁), put FIRST(Y₂) ε into FIRST(α)
 - if ε is in FIRST(Y₂), put FIRST(Y₃) ε into FIRST(α)

 - if ε is in FIRST(Y_i) for all i, put ε into FIRST(α)

Given two productions for nonterminal p

- Production 1: p → α FIRST (d) ← look for current taken
 Production 2: p → β FIRST (β) ← look for current taken

If only 1 has it, pick there production If both have it, grammar is not LL(1) If neither have it, if one FIRST set has E in it, look or what terminals can follow p

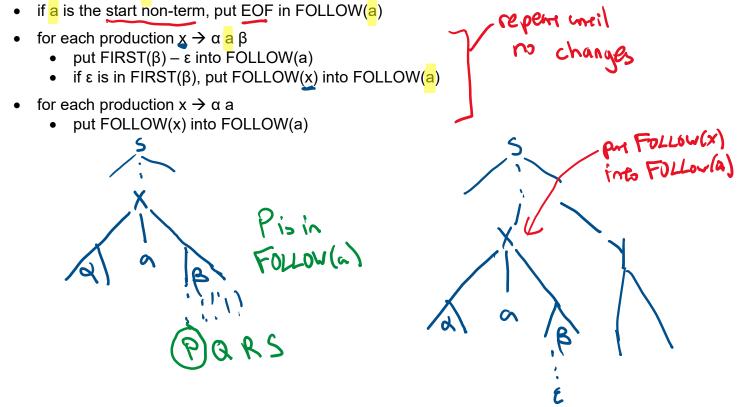
FOLLOW sets

For single nonterminal a, FOLLOW(a) is the set of terminals that can appear immediately to the right of *a*

Formally, FOLLOW(a) = $\left\{ \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\} \left(T \in \mathbb{Z} \land S \Rightarrow \mathcal{A} \land \overline{\Gamma} \beta \right) \vee \left(T = E0F \land S \Rightarrow \mathcal{A} \land \mathcal{A} \right)$

Computing FOLLOW sets

To build FOLLOW(a)



Building the parse table

```
for each production x → α {
   for each terminal T in FIRST(α) {
      put α in table[x][T]
   }
   if ε is in FIRST(α) {
      for each terminal T in FOLLOW(x) {
        put α in table[x][T]
      }
   }
}
```