CS 536 Announcements for Wednesday, March 6, 2024

Last Time

- wrap up CYK
- classes of grammars
- top-down parsing

Today

- review grammar transformations

- building a predictive parser
- FIRST and FOLLOW sets

Next Time

- predictive parsing and syntax-directed translation

LL(1) Predictive Parser

Predict the parse tree top-down

Parser structure

- 1 token lookahead
- parse/selector table
- stack tracking current parse tree's frontier

Necessary conditions

- left-factored
- free of left-recursion

Review of LL(1) grammar transformations
Necessary (but not sufficient conditions) for LL(1) parsing

- free of left recursion - no left-recursive rules
- left-factored - no rules with a common prefix, for any nonterminal

Why left-recursion is a problem
Outside/high-level view
CFG snippet: x list \rightarrow xlist $\mathrm{X} \mid \mathrm{X}$
Current parse tree: xlist
Current token: X
How to grow parse tree?
Depends on if there
 are more X^{\prime} s
\rightarrow need more look ahead

Inside/algorithmic-level view
CFG snippet: xlist \rightarrow xlist $X \mid \mathcal{K} \mathcal{L}$
Current parse tree: xlist
Current token: X
Pare table

Removing left-recursion (review)
Replace

with

where β does not start with A (or may be ε)

Preserves the language (as a list of α 's, starting with a β), but uses right recursion

Example

Left factoring (review)

Removing a common prefix from a grammar

Replace

$$
A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \ldots\left|\alpha \beta_{n}\right| \gamma_{1}\left|\gamma_{2}\right| \ldots \mid \gamma_{m}
$$

with

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime}\left|Y_{1}\right| Y_{2}|\ldots| Y_{m} \\
& A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}
\end{aligned}
$$

where β_{i} and γ_{i} are sequence of symbols with no common prefix
Note: γ_{i} may not be present, and one of the β_{i} may be ε

Idea: combine all "problematic" rules that start with α into one rule $\alpha \mathrm{A}^{\prime}$ A' now represents the suffix of the problematic rules

Example 1

$$
\exp \rightarrow<A>||<C>| D
$$

$$
\begin{aligned}
& \exp \rightarrow\left\langle\exp \rho^{\prime}\right| D \\
& \exp \rightarrow A\rangle|B\rangle|C\rangle
\end{aligned}
$$

Example 2

stmt \rightarrow ID ASSIGN exp|ID (elist) | return
$\exp \rightarrow$ INTLIT|ID
elist $\rightarrow \exp \mid \exp C O M M A$ elist

Stat $\rightarrow 1 D$ stat' \mid return
semi \rightarrow ASSIGN exp |(elise)
exp \rightarrow INTLIT 10
elise \rightarrow exp elise
eliot' \rightarrow を \mid ComA elist

Building the parse table

Goal: given production Ihs \rightarrow ihs, determine what terminals would lead us to choose that production
ie, figure out T such that Table $[$ Ihs $][T]=$ ohs

- also whore terminals could indicate an error ore this point?
- what terminals could dhs possibly start with?
- What terminals could possibly come after Ihs?

Idea: $\operatorname{FIRST}(r h s)=$ set of terminals that begin sequences derivable from hs
Suppose top-of-stack symbol is nonterminal p and the current token is \mathbf{A} and we have

- Production 1: $p \rightarrow \alpha$
- Production 2: $p \rightarrow \beta$

FIRST lets us disambiguate:

- if $\mathbf{A} \in \operatorname{FIRST}(\alpha)$, then production 1 is a viable choice
- if $\mathbf{A} \in \operatorname{FIRST}(\beta)$, then production 2 is a viable choice
- if \mathbf{A} is in just one of them, then we car predict which produveion to use

FIRST sets

FIRST(α) is the set of terminals that begin the strings derivable from α, and also, if α can derive ε, then ε is in $\operatorname{FIRST}(\alpha)$. Formally,

For a symbol X

- if X is terminal: $\operatorname{FIRST}(X)=\{X\}$
- if X is $\varepsilon: \operatorname{FIRST}(X)=\{\varepsilon\}$
- if X is nonterminal : for each production $X \rightarrow Y_{1} Y_{2} Y_{3 . .} Y_{n}$
- put FIRST $\left(Y_{1}\right)-\varepsilon$ into $\operatorname{FIRST}(X)$
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right)$, put $\operatorname{FIRST}\left(\mathrm{Y}_{2}\right)-\varepsilon$ into $\operatorname{FIRST}(\mathrm{X})$
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{2}\right)$, put $\operatorname{FIRST}\left(\mathrm{Y}_{3}\right)-\varepsilon$ into $\operatorname{FIRST}(\mathrm{X})$
- ...
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{\mathrm{i}}\right)$ for all i , put ε into $\operatorname{FIRST}(\mathrm{X})$

Original CFG

Transformed CFG
exp \rightarrow term exp
expo' $\rightarrow+$ term expri $\mid \varepsilon$
term \rightarrow factor term'
term' \rightarrow * factor term' 1ε
factor \rightarrow exponent factor! factor' $\rightarrow \uparrow$ factor $\backslash \varepsilon$
exponent \rightarrow INTUIT \mid (exp)

Computing FIRST(α) (continued)
Extend FIRST to strings of symbols α

- want to define FIRST for all RHS of productions

Let $\alpha=Y_{1} Y_{2} Y_{3 . .} Y_{n}$

- put $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right)-\varepsilon$ into $\operatorname{FIRST}(\alpha)$
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right)$, put $\operatorname{FIRST}\left(\mathrm{Y}_{2}\right)-\varepsilon$ into $\operatorname{FIRST}(\alpha)$
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{2}\right)$, put $\operatorname{FIRST}\left(\mathrm{Y}_{3}\right)-\varepsilon$ into $\operatorname{FIRST}(\alpha)$
- ...
- if ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{\mathrm{i}}\right)$ for all i , put ε into $\operatorname{FIRST}(\alpha)$

Given two productions for nonterminal p
$\begin{array}{ll}\text { - Production 1:p } p \alpha & \text { FIRST }(\alpha) \longleftarrow \text { look for currere taken } \\ \text { - Production 2: } p \rightarrow \beta & \text { FIRST }(\beta) \longleftarrow\end{array}$
If only 1 has it, pick that production
If both have it, grammar is not LL(1)
If neither have it, if one FIRST sex has ε in it, look ore what terminals can follow p

FOLLOW sets
For single nonterminal $a, \operatorname{FOLLOW}(a)$ is the set of terminals that can appear immediately to the right of a

$$
\left.\begin{array}{l}
\text { Formally, } \\
\text { Follow }(a)
\end{array}\right)=\left\{T \mid\left(T \in \sum_{\wedge}^{\downarrow} s \Rightarrow *^{*} \alpha a T \beta\right) \vee\left(T=E O F \wedge s \Rightarrow{ }^{*} \alpha a\right)\right.
$$

Computing FOLLOW sets

To build FOLLOW (a)

- if a is the start non-term, put EOF in FOLLOW(a)
- for each production $\chi \rightarrow \alpha$ a β
- put $\operatorname{FIRST}(\beta)-\varepsilon$ into FOLLOW (a)

- for each production $\mathrm{x} \rightarrow \alpha \mathrm{a}$
- put FOLLOW (x) into FOLLOW (a)

Building the parse table

```
for each production x }
    for each terminal T in FIRST(\alpha) {
        put \alpha in table[x][T]
    }
    if \varepsilon is in FIRST(\alpha) {
        for each terminal T in FOLLOW(x) {
            put \alpha in table[x][T]
        }
    }
}
```

