
Week 9 (W) Page 1

CS 536 Announcements for Wednesday, March 20, 2024
Midterm 2
• Thursday, March 21, 7:30 – 9 pm
• S429 Chemistry
• bring your student ID

Last Time
• name analysis

• handling tuples
• handling classes

• review for Midterm 2
Today
• type checking
• type-system concepts
• type-system vocabulary
• base

• type rules
• how to apply type rules

After Spring Break
• runtime environments

What is a type?
Short for data type
• classification identifying kinds of data

• a set of possible values that a variable can possess

• operations that can be done on member values

• a representation (perhaps in memory)

Type intuition – is the following allowed?
int a = 0;

int *pointer = &a;

float fraction = 1.2;

a = pointer + fraction;

Week 9 (W) Page 2

Components of a type system
base types (built-in/primitive)

rules for constructing types

means of determining if types are compatible or equivalent

rules for inferring the type of an expession

Type rules of a language specify
What types the operands of an operator must be

double a;
int b;
a = b;
b = a;

What type the result of an operator is

Type coercion
• implicit cast from one data type to another

• type promotion

Places where certain types are expected
if (x = 4) {
 ...
}

Week 9 (W) Page 3

Type checking: when do we check?

static typing – type checking done

dynamic typing – type checking done

combination of the two

Static vs dynamic trade-offs
• static

• dynamic

Duck typing - type is defined by methods and properties

class bird:
 def quack() : print("quack")

class robobird
 def quack() : print("0100101101")

Week 9 (W) Page 4

Type checking: what do we check?
strong vs weak typing
• degree to which type checks are performed
• degree to which type errors are allowed to happened at runtime

General principles
• statically typed

• more implicit casting allowed

• fewer checks performed at runtime

Example

union either { real(2) + 2.0
 int i;
 float f;
} u;

u.i = 12;

float val = u.f;

Type safety
• All successful operations must be allowed by the type system

• Java is explicitly designed to be type safe

• C is not

printf("%s", 1);

struct big {
 int a[100000];
};
struct big *b = malloc(1);

• C++ is a little better
class T1 { char a; }

class T2 { int b; }

int main() {
 T1 *myT1 = new T1();
 T2 *myT2 = new T2();
 myT1 = (T1 *)myT2;
}

Week 9 (W) Page 5

Type checking in base
base's type system
• primitive types

• type constructors

• coercion

Type errors in base
Operators applied to operands of wrong type

• arithmetic operators

• logical operators

• equality operators
• must have operands of the same type
• can't be applied to

• other relational operators

• assignment operator
• must have operands of the same type
• can't be applied to

Expressions that, because of context, must be a particular type but are not

• expressions that must be logical (in base)

• reading

• writing

Related to function calls
• invoking (i.e., calling) something that is not a function
• invoking a function with

• wrong number of arguments
• wrong types of arguments

• returning a value from a void function
• not returning a value from a non-void function
• returning wrong type of value in a non-void function

Week 9 (W) Page 6

Type checking
Recursively walks the AST to
• determine the type of each expression and sub-expression using the type rules of

the language
• find type errors

Add a typeCheck method to AST nodes

Type checking: binary operator

Type "checking": literal

Type checking: IdNode

Type checking: others
• call to function f

• get type of each actual parameter of f
• match against type of corresponding formal parameter of f
• pass f 's return type up the tree

• statement s
• type check constituents of s

Week 9 (W) Page 7

Type checking (cont.)
Type checking: errors
Goals:
• report as many distinct errors as possible
• don't report same error multiple times – avoid error cascading

Introduce internal error type
• when type incompatibility is discovered

• report the error
• pass error up the tree

• when a type check gets error as an operand
• don't (re)report an error
• pass error up the tree

Example:
integer a.
logical b.
a = True + 1 + 2 + b.
b = 2.

	CS 536 Announcements for Wednesday, March 20, 2024
	What is a type?
	Components of a type system
	Type rules of a language specify
	Type checking: when do we check?
	Type checking: what do we check?
	Type safety
	Type checking in base
	Type checking
	Type checking (cont.)

