
Week 10 (M) Page 1

CS 536 Announcements for Monday, April 1, 2024
Last Time
• type checking
• type-system concepts
• type-system vocabulary
• base

• type rules
• how to apply type rules

Today
• runtime environments
• runtime storage layout
• activation records
• static allocation
• stack allocation
• what happens on function call, entry, return

Next Time
• parameter passing

Type checking in base
base's type system
• primitive types: integer logical void

• type constructors: tuple

• coercion: a logical cannot be used as an integer is expected and vice versa

Type errors in base
• operators applied to operands of wrong type

• expressions that, because of context, must be a particular type but are not

• related to function calls
Type checking
• Recursively walks the AST to

• determine the type of each expression and sub-expression using the type rules of
the language

• find type errors

• Add a typeCheck method to AST nodes

Week 10 (M) Page 2

Type checking (cont.)
Type checking: errors
Goals:
• report as many distinct errors as possible
• don't report same error multiple times – avoid error cascading

Introduce internal error type
• when type incompatibility is discovered

• report the error
• pass error up the tree

• when a type check gets error as an operand
• don't (re)report an error
• pass error up the tree

Example:
integer a.
logical b.
a = True + 1 + 2 + b.
b = 2.

Week 10 (M) Page 3

Back to the big picture
Before code generation, we need to consider the runtime environment:
 = underlying software & hardware configuration assumed by the program

Program piggybacks on the operating system (OS)
• provides functions access to hardware
• provides illusion of uniqueness
• enforces some boundaries on what is allowed

Compiler must use runtime environment as best it can
• limited # of very fast registers to do computation
• comparatively large region of memory to hold data
• some basic instructions from which to build more complex behaviors

We need to create/impose conventions on the way our program accesses memory
• assembly code enforces very few rules
• conventions help to guarantee separately developed code works together

Issues to consider
Variables
• How are they stored?

• What happens when a variable's value is needed?

How do functions work?
• What information should be stored for each function?

• What should happen when client code calls a function?

• What should happen when a function is entered?

• What should happened when a function returns?

Week 10 (M) Page 4

General memory layout

Memory layout: static allocation
Region for global memory

One "frame" for each procedure
• memory "slot" for each local, parameter
• memory "slot" for caller

Every time a function is called,
its names (local varibles & parameters)
refer to the same location in memory

Week 10 (M) Page 5

Memory layout: stack allocation
Allocate one activation record (AR) per invocation
• use the stack
• push a new AR on function entry
• pop AR on function exit
• to reduce the size, put static data in the global area

Stack size not known at compile time
• don't know (at compile-time) how many ARs there will be
• size of local variables may not be known
• each AR keeps track of the previous AR's boundaries

Activation record keeps track of
• local variables
• info about the call made by the caller

• data context

• control context

Non-local dynamic memory
Don't always want all data allocated in a function call to disappear on return

Don't know how much space we'll need

The Heap
• region of memory independent of the stack

• allocated according to calls in the program

• how is memory "given back"?

Week 10 (M) Page 6

Function calls
Instruction pointer ($ip) tracks the line (address) of code that it is executing
• if $ip points to code generated for some function, we'll say we are in that function

caller = function doing the invocation
callee = function being invoked
$sp (stack pointer) – points to top of stack
$fp (frame pointer) – points to bottom of current AR

Activation records revisited

Week 10 (M) Page 7

Function entry: caller responsibilities
Store the caller-saved registers in it's own AR
Set up the actual parameters
• set aside slot for the return value
• push parameters onto the stack

Copy return address out of $ip
Jump to first instruction of the callee

Function entry: callee responsibilities
Save $fp (it will need to be restored when the callee returns)
Update the base of the new AR to be the end of the old AR
Save callee-saved registers (if necessary)
Make space for locals

Function exit: callee responsibilities
Set the return value
Restore callee-saved registers
Grab stored return address
Restore old $sp
Restore old $fp
Jump to the stored return address

Function exit: caller responsibilities
Pop the return value (or copy from register)
Restore caller-saved registers

Week 10 (M) Page 8

Example

#1 integer summation{integer max} [
#2 integer sum.
#3 integer k.
#4 sum = 0.
#5 k = 1.
#6 while k <= max [
#7 sum = sum + k.
#8 k++.
#9]
#10 return sum.
#11]
#12 void main{} [
#13 integer x.
#14 x = summation(4).
#15 write << x.
#16]

	CS 536 Announcements for Monday, April 1, 2024
	Type checking in base
	Type checking (cont.)
	Back to the big picture
	Issues to consider
	General memory layout
	Memory layout: static allocation
	Memory layout: stack allocation
	Non-local dynamic memory
	Function calls
	Activation records revisited
	Function entry: caller responsibilities
	Function entry: callee responsibilities
	Function exit: callee responsibilities
	Function exit: caller responsibilities
	Example

