
Week 10 (W) Page 1

CS 536 Announcements for Wednesday, April 3, 2024
Last Time
• runtime environments
• runtime storage layout
• static vs stack allocation
• activation records
• what happens on function call, entry, return
Today
• parameter passing
• terminology
• different styles

• what they mean
• how they look on the stack
• compare and contrast

Next Time
• runtime access to variables in different scopes

Example
#1 integer summation{integer max} [
#2 integer sum.
#3 integer k.
#4 sum = 0.
#5 k = 1.
#6 while k <= max [
#7 sum = sum + k.
#8 k++.
#9]
#10 return sum.
#11]
#12 void main{} [
#13 integer x.
#14 x = summation(4).
#15 write << x.
#16]

Week 10 (W) Page 2

Parameter passing: terminology
R-value – value of an expression
L-value – value with with a location

pointer – a variable whose value is a memory address

aliasing – when two (or more) variables hold the same address

In definition of function/method/procedure
void f(int x, int y, bool b) { . . . }

In call to function/method/procedure

f(x + y, 7, true)

Types of parameter passing
pass by value
• when a procedure is called, the values of the actuals are copied into the formals

pass by reference
• when a procedure is called, the address of the actuals are copied into the formals

pass by value-result
• when a procedure is called, the values of actuals are passed
• when procedure is ready to return, final values of formals are copied back to the actuals

pass by name
• (conceptually) each time a procedure is called, the body of the procedure (the callee) is

rewritten with the actual text of the actual parameters
• like macros in C/C++, but conceptually the rewriting occurs at runtime

Week 10 (W) Page 3

Example: pass by value
void f(int x, int y, int z) {
 x = 3;
 y = 4;
 z = y;
}

void main() {
 int a = 1, b = 2, c = 3;
 f(a, b, c);
 f(a+b, 7, 8);
}

Example: pass by reference
void f(int x, int y, int z) {
 x = 3;
 y = 4;
 z = y;
}

void main() {
 int a = 1, b = 2, c = 3;
 f(a, b, c);
 f(a+b, 7, 8);
}

Week 10 (W) Page 4

Example: pass by value-result
void f(int x, int y, int z) {
 x = 3;
 y = 4;
 z = y;
}

void main() {
 int a = 1, b = 2, c = 3;
 f(a, b, c);
 f(a+b, 7, 8);
}

Parameter passing example
class Point {
 Position p;
 ...
}
class Position {
 int x, y;
 ...
}

void doIt(Point pt, Position pos) {
 pos = pt.p;
 pos.x++;
 pos.y++;
}

void main() {
 Position loc;
 Point dot;
 // code to initialize Point dot with position (1, 2)
 // code to initialize Position loc at (3, 4)
 doIt(dot, loc);
}

In Java, loc & dot are references to objects (in the heap)
In C++, loc & dot are objects (in the AR of main)

Week 10 (W) Page 5

Parameter passing example (cont.)
Pass by value in Java

Pass by value in C++ Pass by reference in C++

What are the (x,y) coordinates of dot and loc after the call to doIt?

 Pass by value (Java) Pass by value (C++) Pass by reference (C++)

dot

loc

Week 10 (W) Page 6

Aliasing and parameter passing
How aliasing can happen
• via pointers (in pass by value) – aliasing of actuals and formals

doIt(dot, loc); // in Java

• when a global variable is passed by reference
int t = 0;

void h(int x) {
 x = 7;
 t = 4;
}

void main() {
 h(t);
}

• when a parameter is passed by reference more than once
void f(int x, int y, int z) {
 x = 3;
 y = 4;
 z = y;
}

void main() {
 int a = 1, b = 2, c = 3;
 f(a, a, b);
}

What happens in pass by value-result?

Week 10 (W) Page 7

Code generation and parameter passing
Efficiency considerations (calls, accesses by callee, return)
Pass by value

• copy values into callee's AR

• callee directly accesses AR locations

Pass by reference

• copy addresses into callee's AR

• access in callee via indirection

Pass by value-result

Handling objects

class Point { class Position {
 Position p; int x, y;

} }

void doIt(Point pt, Position pos) {
 pos = pt.p;
 pos.x++;
 pos.y++;
}

void main() {
 Position loc;
 Point dot;
 // ... initialize dot with position (1, 2)
 // ... initialize loc at (3, 4)
 doIt(dot, loc);
}

In Java, loc and dot hold the addresses of objects

In C++, loc and dot are objects in the stack

Week 10 (W) Page 8

Compare and contrast
Pass by value
• no aliasing

• easier for static analysis

• called function (callee) is faster

Pass by reference
• more efficient when passing large objects

• can modify actuals

Pass by value-result
• more efficient than pass by refence for small objects

• if no aliasing, can be implemented as pass by reference for large objects

	CS 536 Announcements for Wednesday, April 3, 2024
	Example
	Parameter passing: terminology
	Types of parameter passing
	Example: pass by value
	Example: pass by reference
	Example: pass by value-result
	Parameter passing example
	Parameter passing example (cont.)
	Aliasing and parameter passing
	Code generation and parameter passing
	Compare and contrast

