
On-line Notes
CS536-S23 Intro to PLs and Compilers

These notes were originally written by Professor Emerita Susan Horwitz and used, maintained, and updated
by subsequent CS 536 instructors including Beck Hasti, Drew Davidson, Loris D'Antoni, and Aws
Albarghouthi.

1. Overview

2. Scanning

3. JLex

4. Context-free Grammars

5. Syntax-directed Translation

6. JavaCUP

7. Parsing

8. Top-down Parsing

9. Syntax-directed Translation for Predictive Parsing

10. Symbol Tables and Static Checks

11. Runtime Environments

12. Parameter Passing

13. Runtime Access to Variables

14. Code Generation

15. Optimization

https://pages.cs.wisc.edu/~horwitz/
https://pages.cs.wisc.edu/~horwitz/
https://pages.cs.wisc.edu/~hasti/
https://pages.cs.wisc.edu/~hasti/
https://pages.cs.wisc.edu/~loris/
https://pages.cs.wisc.edu/~loris/
https://pages.cs.wisc.edu/~aws/
https://pages.cs.wisc.edu/~aws/
https://pages.cs.wisc.edu/~aws/
https://pages.cs.wisc.edu/~aws/
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/Parsing.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/Parsing.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html

Contents

• Introduction
• The Scanner
• The Parser
• The Semantic Analyzer
• The Intermediate Code Generator
• The Optimizer
• The Code Generator

Introduction

What is a compiler?

• A recognizer (of some source language
L).

• A translator (of programs written in L
into programs written in some object or
target language L').

Here's a simple pictorial view:

Source

Program
Compiler Object

code

Error

Log

A compiler is itself a program, written in
some host language. (In cs536, students
will implement a compiler for a simple
source language using Java as the host
language.)

A compiler operates in phases; each phase
translates the source program from one
representation to another. Different
compilers may include different phases,
and/or may order them somewhat
differently. A typical organization is shown
below.

1 of 6

https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#parser
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#parser
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#semantic
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#semantic
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#opt
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#opt
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#codegen
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#codegen
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#intro

Source

Program

intermediate

code generator

Sequence of characters

semantic

analyzer

syntax analyzer

(parser)

optimizer

lexical analyzer

(scanner)

code

generator

Sequence of tokens

Abstract-syntax tree (AST)

Augmented, annotated AST

Intermediate code

Optimized intermediate code

object

program

Assembly or machine code

Below, we look at each phase of the
compiler.

The Scanner

The scanner is called by the parser; here's
how it works:

• The scanner reads characters from the
source program.

• The scanner groups the characters into
lexemes (sequences of characters that
"go together").

• Each lexeme corresponds to a token; the
scanner returns the next token (plus
maybe some additional information) to
the parser.

• The scanner may also discover lexical
errors (e.g., erroneous characters).

2 of 6

https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#scanner

The definitions of what is a lexeme, token,
or bad character all depend on the source
language.

Example

Here are some Java lexemes and the
corresponding tokens:

lexeme: ; = index tmp 37 102

corresponding token: SEMI-COLON ASSIGN IDENT IDENT INT-LIT INT-LIT

Note that multiple lexemes can correspond
to the same token (e.g., there are many
identifiers).

Given the source code:

position = initial + rate * 60 ;

a Java scanner would return the following
sequence of tokens:

IDENT ASSIGN IDENT PLUS IDENT TIMES INT-LIT SEMI-COLON

Erroneous characters for Java source
include # and control-a.

The Parser

• Groups tokens into "grammatical
phrases", discovering the underlying
structure of the source program.

• Finds syntax errors. For example, in Java
the source code
position = * 5 ;

corresponds to the sequence of tokens:
IDENT ASSIGN TIMES INT-LIT SEMI-

COLON

All are legal tokens, but that sequence of
tokens is erroneous.

• Might find some "static semantic" errors,
e.g., a use of an undeclared variable, or
variables that are multiply declared.

• Might generate code, or build some
intermediate representation of the
program such as an abstract-syntax tree.

Example

3 of 6

source code: position = initial + rate

* 60 ;

Abstract syntax tree:

Notes:

• The interior nodes of the tree are
operators.

• A node's children are its operands.
• Each subtree forms a "logical unit", e.g.,

the subtree with * at its root shows that
because multiplication has higher
precedence than addition, this operation
must be performed as a unit (not
initial+rate).

The Semantic Analyzer

The semantic analyzer checks for (more)
"static semantic" errors, e.g., type errors. It
may also annotate and/or change the
abstract syntax tree (e.g., it might annotate
each node that represents an expression
with its type). Example:

Abstract syntax tree before semantic
analysis:

4 of 6

https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#semantic
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#semantic

Abstract syntax tree after semantic
analysis:

The Intermediate Code
Generator

The intermediate code generator translates
from abstract-syntax tree to intermediate
code. One possibility is 3-address code
(code in which each instruction involves at
most 3 operands). Below is an example of
3-address code for the abstract-syntax tree
shown above. Note that in this example, the
second and third instructions each have
exactly three operands (the location where
the result of the operation is stored, and
two operators); the first and fourth
instructions have just two operands

5 of 6

https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#int

("temp1" and "60" for instruction 1, and
"position" and "temp3" for instruction 4).

temp1 = inttofloat(60)
temp2 = rate * temp1
temp3 = initial + temp2
position = temp3

The Optimizer

The optimizer tries to improve code
generated by the intermediate code
generator. The goal is usually to make code
run faster, but the optimizer may also try to
make the code smaller. In the example
above, an optimizer might first discover
that the conversion of the integer 60 to a
floating-point number can be done at
compile time instead of at run time. Then it
might discover that there is no need for
"temp1" or "temp3". Here's the optimized
code:

temp2 = rate * 60.0
position = initial + temp2

The Code Generator

The code generator generates object code
from (optimized) intermediate code. For
example, the following code might be
generated for our running example:

 .data
 c1:
 .float 60.0
 .text
 l.s $f0,rate
 mul.s $f0,c1
 l.s $f2,initial
 add.s $f0,$f0,$f2
 s.s $f0,position

6 of 6

https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#opt
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#opt
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#codegen
https://pages.cs.wisc.edu/~hasti/cs536/readings/overview.html#codegen

Contents

• Overview
• Finite-State Machines
◦ Example: Pascal Identifiers
◦ Test Yourself #1
◦ Example: Integer Literals
◦ Formal Definition
◦ Deterministic and Non-Deterministic

FSMs
◦ How to Implement a FSM

• Regular Expressions
◦ Test Yourself #2
◦ Example: Integer Literals
◦ The Language Defined by a Regular

Expression
• Using Regular Expressions and Finite-

State Machines to Define a Scanner
◦ Scanning: Problem Definition
◦ Method 1
◦ Test Yourself #3
◦ Method 2

Overview

Recall that the job of the scanner is to
translate the sequence of characters that is
the input to the compiler to a
corresponding sequence of tokens. In
particular, each time the scanner is called it
should find the longest sequence of
characters in the input, starting with the
current character, that corresponds to a
token, and should return that token.

It is possible to write a scanner from
scratch, but a more efficient and less error-
prone approach is to use a scanner
generator like lex or flex (which produce C
code), or JLex (which produces Java code).
The input to a scanner generator includes
one regular expression for each token
(and for each construct that must be
recognized and ignored, such as whitespace
and comments). Therefore, to use a scanner
generator you need to understand regular
expressions. To understand how the

1 of 19

https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#fsm
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#fsm
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#id
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#id
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#formalDef
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#formalDef
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#nondet
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#nondet
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#nondet
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#nondet
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#imp
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#imp
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#regExp
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#regExp
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#reInt
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#reInt
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#set
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#set
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#set
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#set
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#scanner
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#maximalMunchTokenization
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#maximalMunchTokenization
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method2
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method2

scanner generator produces code that
correctly recognizes the strings defined by
the regular expressions, you need to
understand finite-state machines
(FSMs).

Finite-State Machines

A finite-state machine is similar to a
compiler in that:

• A compiler recognizes legal programs in
some (source) language.

• A finite-state machine recognizes legal
strings in some language.

In both cases, the input (the program or the
string) is a sequence of characters.

Example: Pascal Identifiers

Here's an example of a finite-state-machine
that recognizes Pascal identifiers
(sequences of one or more letters or digits,
starting with a letter):

In this picture:

• Nodes are states.
• Edges (arrows) are transitions. Each edge

should be labeled with a single character.
In this example, we've used a single edge
labeled "letter" to stand for 52 edges
labeled 'a', 'b', ..., 'z', 'A', ..., 'Z'. (Similarly,
the label "letter,digit" stands for 62 edges
labeled 'a',...'Z','0',...'9'.)

• S is the start state; every FSM has exactly
one (a standard convention is to label the
start state "S").

• A is a final state. By convention, final
states are drawn using a double circle,

2 of 19

and non-final states are drawn using
single circles. A FSM may have more than
one final state.

A FSM is applied to an input (a sequence of
characters). It either accepts or rejects that
input. Here's how the FSM works:

• The FSM starts in its start state.
• If there is a edge out of the current state

whose label matches the current input
character, then the FSM moves to the
state pointed to by that edge, and
"consumes" that character; otherwise, it
gets stuck.

• The finite-state machine stops when it
gets stuck or when it has consumed all of
the input characters.

An input string is accepted by a FSM if:

• The entire string is consumed (the
machine did not get stuck), and

• the machine ends in a final state.

The language defined by a FSM is the set of
strings accepted by the FSM.

The following strings are in the language of
the FSM shown above:

• x

• tmp2

• XyZzy

• position27

The following strings are not in the
language of the FSM shown above:

• 123

• a?

• 13apples

TEST YOURSELF #1

Write a finite-state machine that accepts
e-mail addresses, defined as follows:

• a sequence of one or more letters and/or
digits,

3 of 19

• followed by an at-sign,
• followed by one or more letters,
• followed by zero or more extensions.
• An extension is a dot followed by one or

more letters.

solution

Example: Integer Literals

The following is a finite-state machine that
accepts integer literals with an optional +
or - sign:

Formal Definition

An FSM is a 5-tuple:

• is a finite set of states (in the

above example).

• (an uppercase sigma) is the alphabet of

the machine, a finite set of characters

that label the edges (in

the above example).

• is the start state, an element of (in

the above example).

• is the set of final states, a subset of

({B} in the above example).

• is the state transition relation:

 (i.e., it is a function that takes

two arguments -- a state in and a

character in -- and returns a state in).

(Q,Σ, δ, q, F)

Q {S, A, B}

Σ

{+,−, 0, 1, . . . , 9}

q Q S

F Q

δ

Q × Σ → Q

Q

Σ Q

4 of 19

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans1

Here's a definition of for the above

example, using a state transition table:

+ -

Deterministic and Non-
Deterministic FSMs

There are two kinds of FSM:

1. Deterministic:
• No state has more than one outgoing

edge with the same label.
2. Non-Deterministic:

• States may have more than one
outgoing edge with same label.

• Edges may be labeled with

(epsilon), the empty string. The FSM

can take an -transition without

looking at the current input
character.

Example

Here is a non-deterministic finite-state
machine that recognizes the same language
as the second example deterministic FSM
above (the language of integer literals with
an optional sign):

Sometimes, non-deterministic machines are
simpler than deterministic ones, though not
in this example.

A string is accepted by a non-deterministic
finite-state machine if there exists a

δ

digit

S A A B

A B

B B

ε

ε

5 of 19

sequence of moves starting in the start
state, ending in a final state, that consumes
the entire string. For example, here's what
happens when the above machine is run on
the input "+75":

After
scanning

Can be in these

states

(nothing)

(stuck)

(stuck)

(stuck)

There is one sequence of moves that
consumes the entire input and ends in a
final state (state B), so this input is
accepted by his machine.

It is worth noting that there is a theorem
that says:

For every non-deterministic finite-state

machine , there exists a deterministic

machine [Math Processing Error] such

that and [Math Processing Error]

accept the same language.

How to Implement a FSM

The most straightforward way to program a
(deterministic) finite-state machine is to use
a table-driven approach. This approach
uses a table with one row for each state in
the machine, and one column for each
possible character. Table[j][k] tells which

state to go to from state j on character k.
(An empty entry corresponds to the
machine getting stuck, which means that
the input should be rejected.)

Recall the table for the (deterministic)
"integer literal" FSM given above:

+ -

S A

+ A

+7 B

+75 B

M

M

digit

S A A B

A B

B B

6 of 19

https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#int
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#int

The table-driven program for a FSM works
as follows:

• Have a variable named state, initialized to
S (the start state).

• Repeat:
◦ read the next character from the input
◦ use the table to assign a new value to

the state variable
until the machine gets stuck (the table
entry is empty) or the entire input is read.
If the machine gets stuck, reject the
input. Otherwise, if the current state is a
final state, accept the input; otherwise,
reject it.

Regular Expressions

Regular expressions provide a compact way
to define a language that can be accepted
by a finite-state machine. Regular
expressions are used in the input to a
scanner generator to define each token,
and to define things like whitespace and
comments that do not correspond to tokens,
but must be recognized and ignored.

As an example, recall that a Pascal
identifier consists of a letter, followed by
zero or more letters or digits. The regular
expression for the language of Pascal
identifiers is:

letter . (letter | digit)*

The following table explains the symbols
used in this regular expression:

| means "or"

. means "followed by"

* means zero or more instances of

() are used for grouping

Often, the "followed by" dot is omitted, and
just writing two things next to each other
means that one follows the other. For
example:

letter (letter | digit)*

7 of 19

In fact, the operands of a regular
expression should be single characters or
the special character epsilon, meaning the
empty string (just as the labels on the
edges of a FSM should be single characters
or epsilon). In the above example, "letter" is
used as a shorthand for:

a | b | c | ... | z | A | ... | Z

and similarly for "digit". Also, we
sometimes put the characters in quotes
(this is necessary if you want to use a
vertical bar, a dot, or a star character).

To understand a regular expression, it is
necessary to know the precedences of the
three operators. They can be understood by
analogy with the arithmetic operators for
addition, multiplication, and
exponentiation:

Regular
Expression
Operator

Analogous
Arithmetic
Operator

Precedence

| plus
lowest
precedence

. times middle

* exponentiation
highest
precedence

So, for example, the regular expression:

does not define the same language as the
expression given above. Since the dot
operator has higher precedence than the |
operator (and the * operator has the
highest precedence of all), this expression
is the same as:

and it means "either two letters, or zero or
more digits".

TEST YOURSELF #2

letter. letter|digit∗

(letter. letter)|(digit)∗

8 of 19

Describe (in English) the language defined
by each of the following regular
expressions:

1.

2. *

3. *

solution

Example: Integer Literals

An integer literal with an optional sign can
be defined in English as:

"(nothing or + or -) followed by one or
more digits"

The corresponding regular expression is:

Note that the regular expression for "one or
more digits" is:

i.e., "one digit followed by zero or more
digits". Since "one or more" is a common
pattern, another operator, +, has been
defined to mean "one or more". For
example,

+

means "one or more digits", so another way
to define integer literals with optional sign
is:

+

The Language Defined by
a Regular Expression

Every regular expression defines a
language: the set of strings that match the
expression. We will not give a formal
definition here, instead, we'll give some

digit|letter letter

digit|letter letter

digit|letter

(+| − |ε). (digit. digit)∗

digit. digit∗

digit

(+| − |ε). digit

9 of 19

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans2

examples:

Regular
Expression

Corresponding Set of
Strings

 {""}

a {"a"}

a.b.c {"abc"}

a | b | c {"a", "b", "c"}

(a | b | c)*
{"", "a", "b", "c", "aa",
"ab", ..., "bccabb" ...}

Using Regular
Expressions and FSMs to
Define a Scanner

There is a theorem that says that for every
regular expression, there is a finite-state
machine that defines the same language,
and vice versa. This is relevant to scanning
because it is usually easy to define the
tokens of a language using regular
expressions, and then those regular
expression can be converted to finite-state
machines (which can actually be
programmed).

For example, let's consider a very simple
language: the language of assignment
statements in which the left-hand side is a
Pascal identifier (a letter followed by one or
more letters or digits), and the right-hand
side is one of the following:

• ID + ID
• ID * ID
• ID == ID

This language has five tokens, which can be
defined by the following five regular
expressions:

Token Regular Expression

ASSIGN "="

ID letter (letter | digit)*

PLUS

ε

+

10 of 19

TIMES

EQUALS "="."="

These regular expressions can be converted
into the following finite-state machines:

ASSIGN:

ID:

PLUS:

TIMES:

∗

11 of 19

EQUALS:

The remainder of this section addresses the
following problem: ``Given an FSM for
each token, how do we create a scanner?''

Scanning: Problem
Definition

An FSM only checks language membership.
That is, given an FSM M, it can answer the
question ``Given a string ω, is ω ∈ L(M)?''
A scanner (a.k.a. a tokenizer) needs more:

• It needs to break up into tokens a stream
made up of many different tokens (each
defined by its own FSM)

• It needs to successively find the next
token by a ``maximal munch'':
◦ the longest prefix of the remaining

input that corresponds to a token
and return information about what was
matched

Thus, the problem definition is as follows:

Given a collection of token definitions (in
the form of one FSM for each kind of
token), create a maximal-munch
tokenizer.

Method 1

Recall that the goal of a scanner is to find
the longest prefix of the current input that
corresponds to a token. This has two
consequences:

1. The scanner sometimes needs to look
one or more characters beyond the
last character of the current token,
and then needs to "put back" those
characters so that the next time the

12 of 19

scanner is called it will have the
correct current character. For
example, when scanning a program
written in the simple assignment-
statement language defined above, if
the input is "==", the scanner should
return the EQUALS token, not two
ASSIGN tokens. So if the current
character is "=", the scanner must
look at the next character to see
whether it is another "=" (in which
case it will return EQUALS), or is some
other character (in which case it will
put that character back and return
ASSIGN).

2. It is no longer correct to run the FSM
program until the machine gets stuck
or end-of-input is reached, since in
general the input will correspond to
many tokens, not just a single token.

Furthermore, remember that regular
expressions are used both to define tokens
and to define things that must be
recognized and skipped (like whitespace
and comments). In the first case a value
(the current token) must be returned when
the regular expression is matched, but in
the second case the scanner should simply
start up again trying to match another
regular expression.

With all this in mind, to create a scanner
from a set of FSMs, we must:

• modify the machines so that a state can
have an associated action to "put back N
characters" and/or to "return token XXX",

• we must combine the finite-state
machines for all of the tokens in to a
single machine, and

• we must write a program for the
"combined" machine.

For example, the FSM that recognizes
Pascal identifiers must be modified as
follows:

13 of 19

with the following table of actions:

Actions:

F1: put back 1 char, return ID

And here is the combined FSM for the five
tokens (with the actions noted below):

14 of 19

with the following table of actions:

Actions:

F1: put back 1 char; return ASSIGN
F2: put back 1 char; return ID
F3: return PLUS
F4: return TIMES
F5: return EQUALS

We can convert this FSM to code using the
table-driven technique described above,
with a few small modifications:

• The table will include a column for end-of-
file as well as for all possible characters
(the end-of-file column is needed, for
example, so that the scanner works
correctly when an identifier is the last
token in the input).

• Each table entry may include an action as
well as or instead of a new state.

• Instead of repeating "read a character;
update the state variable" until the
machine gets stuck or the entire input is
read, the code will repeat: "read a
character; perform the action and/or
update the state variable" (eventually, the
action will be to return a value, so the
scanner code will stop, and will start
again in the start state next time it is
called).

Here's the table for the above "combined"
FSM:

+ * = EOF

return
PLUS

return
TIMES

put
back 1
char;
return

ID

put
back 1
char;
return

ID

put back
1 char;
return

ID

return
ID

put
back 1
char;
return

put
back 1
char;
return

return
EQUALS

put
back 1
char;
return

put
back 1
char;
return

return
ASSIGN

letter digit

S B A

A A A

B

15 of 19

ASSIGN ASSIGN ASSIGN ASSIGN

TEST YOURSELF #3

Suppose we want to extend the very simple
language of assignment statements defined
above to allow both integer and double
literals to occur on the right-hand sides of
the assignments. For example:

x = 23 + 5.5

would be a legal assignment.

What new tokens would have to be defined?
What are the regular expressions, the
finite-state machines, and the modified
finite-state machines that define them?
How would the the "combined" finite-state
machine given above have to be
augmented?

solution

Method 2

Unfortunately, the technique for creating a
scanner from a set of FSMs described in
Method 1 has some drawbacks. As we saw
above, the issue that complicates matters
has to do with overlaps in tokens:

• = vs. ==
• + vs. +=
• The keyword ``for'' vs. the identifier

``formula''

The scanner must know how to resolve such
ambiguities.

In fact, the above examples are all handled
correctly by Method 1 (why?), and typically
there is no issue for the kind of overlaps
that arise in the lexical syntax of a
programming language. However, in
general, there can be a problem. For
instance, consider the following token
definitions

16 of 19

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SCANNER-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1
https://pages.cs.wisc.edu/~hasti/cs536/readings/scanning.html#method1

Token Regular Expression

TOKEN1 abc

TOKEN2 (abc)*d

and the input string ``abcabcabc''. The
desired result is that the input string should
be tokenized as TOKEN1 TOKEN1
TOKEN1.

More generally, suppose the input string

were of the form (abc)n, where the
superscript ``n'' means that the string has
n repetitions of ``abc''. The desired result is
that the input string should be tokenized as

TOKEN1n. The problem is that for the
scanner to establish that the first three
characters should be tokenized as
TOKEN1—as opposed to making up the first
three characters of a longer TOKEN2—the
scanner has to visit all the characters of the
input before deciding that there is no final
``d'' as required for the token to be
TOKEN2; consequently, the scanner has to
back up 3*(n-1) characters so that the input

that remains to be tokenized is (abc)n-1. In
this case, the amount of backup is
proportional to the length of the string, and
hence is unbounded (i.e., not bounded by
any fixed constant, independent of n).

The idea behind the tokenization algorithm
is as follows:

• Use one DFA for each kind of token (e.g.,
M1 for abc and M2 for (abc)*d).

• Start running all DFAs simultaneously on
the remaining input.

• A DFA drops out when it enters a stuck
state (i.e., has no available transition on
the next input character).

• Update most_recent_accepted_position
and most_recent_accepted_token
whenever any machine enters a final
state. (Break ties by assigning some
precedence order to the DFAs.)

• When the last DFA drops out,
◦ Return most_recent_accepted_token (or

FAIL, if most_recent_accepted_token

17 of 19

was never set).
◦ For finding the next token, the

remaining input starts at
most_recent_accepted_position.

Using the most-recent accepted position ⇒
the longest token is identified ⇒ a
``maximal munch'' is performed each time
a token is identified.

Example:

Let's consider again the example in which
we have TOKEN1 =def abc; TOKEN2 =def

(abc)*d; and the input string is
``abcabcabc''. (We've specified TOKEN1
and TOKEN2 using regular expressions, but
it is easy to give equivalent FSMs for them.
Call them M1 and M2, respectively.) Here is
a synopsis of what happens when the
tokenization algorithm is run:

• The algorithm consumes the first instance
of ``abc.''
◦ The machines for both TOKEN1 (M1)

and TOKEN2 (M2) are still in play.
◦ M1 is in an accepting state.

• On the next ``a,'' M1 drops out; M2 is
still in play, but it is not in an accepting
state.

• After the next ``bcabc,'' M2 drops out,
but it never entered its accepting state.

• TOKEN1 is returned.
• The remaining input (i.e., abcabc) is

handled similarly, and two more instances
of TOKEN1 are returned.

• The overall result is that ``abcabcabc'' is
tokenized as TOKEN1 TOKEN1 TOKEN1,
as desired.

The drawback of the tokenization algorithm
is that for an example like the one
discussed above, the cost of the algorithm

is O(n2). However, it is possible to give a
linear-time algorithm for maximal-munch
tokenization. See Reps, T., ```Maximal-
munch' tokenization in linear time.'' ACM
TOPLAS 20, 2 (March 1998), pp. 259-273.

18 of 19

http://pages.cs.wisc.edu/~reps/#toplas98b
http://pages.cs.wisc.edu/~reps/#toplas98b
http://pages.cs.wisc.edu/~reps/#toplas98b
http://pages.cs.wisc.edu/~reps/#toplas98b

Here is another variant of the tokenization
algorithm, which uses one DFA. Suppose
that the tokens are defined by the regular
expressions R1, R2, ..., Rk. Let M be a DFA

for which L(M) = L(R1 | R2 | ... | Rk).

Notation: We use ``mrap'' to abbreviate
``most_recent_accepted_position,'' and
``mrat'' to abbreviate
``most_recent_accepted_token.'' We also
assume that there is an auxiliary function,
``tokenFor(q),'' which, for each final state q
∈ F, provides information about what token
should be returned when q is the final state
corresponding for the most-recent accepted
token. It is easy to construct tokenFor(q)
during the construction of M, and it is how
M accounts for the precedence order
among tokens if there is any ambiguity
among the token definitions.

Tokenize(M: DFA, input: string)
let [Q, Σ, δ, q0, F] = M in

begin
 i = 0;
 forever {
 q = q0;

 mrap = -1;
 mrat = -1;
 while (i < length(input)) {
 q = δ(q, input[i]);
 i = i + 1;
 if (q ∈ F) {
 mrap = i;
 mrat = tokenFor(q);
 }
 }
 if (mrap == -1) return 'FAIL'
 i = mrap;
 print(mrat);
 if (i ≥ length(input)) return 'SUCCESS'
 }
end

19 of 19

Contents

• Overview
• Format of a JLex Specification
◦ Regular Expression Rules
◦ Test Yourself #1

◦ JLex Directives
◦ Test Yourself #2

◦ Comments
◦ States
◦ Test Yourself #3

• yyline and yytext
• A Small Example
• Quick Reference Guide

Overview

JLex is a scanner generator that produces
Java code. Here's a picture illustrating how
to create and run a program using JLex:

1 of 13

https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#format
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#format
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#rules
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#rules
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#dirs
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#dirs
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#comments
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#comments
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#states
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#states
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#vars
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#vars
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#example
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#example
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#quick
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#quick

The input to JLex is a specification that
includes a set of regular expressions and
associated actions. The output of JLex is a
Java source file that defines a class named
Yylex. Yylex includes a constructor that is
called with one argument: the input stream

2 of 13

(an InputStream or a Reader). It also
includes a method called next_token,
which returns the next token in the input.

The picture above assumes that a class
named P2 has been defined that contains
the core program of interest. That program
will declare an object of type Yylex, and will
include calls to the Yylex constructor and
its next_token method.

Format of a JLex
Specification

A JLex specification has three parts,
separated by double percent signs:

1. User code: this part of the
specification will not be discussed
here.

2. JLex directives: This includes macro
definitions (described below). See the
JLex Reference Manual for more
information about this part of the
specification.

3. Regular expression rules: These
rules specify how to divide up the
input into tokens. Each rule includes
an optional state list, a regular
expression, and an associated action.

We will discuss the regular expression rules
part first.

Regular Expressions Rules

The state-list part of a rule is discussed
below. Ignoring state-lists for now, the form
of a regular expression rule is:

3 of 13

http://www.cs.princeton.edu/~appel/modern/java/JLex
http://www.cs.princeton.edu/~appel/modern/java/JLex
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#states
https://pages.cs.wisc.edu/~hasti/cs536/readings/JLex.html#states

When the scanner's next_token method is
called, it repeats:

1. Find the longest sequence of
characters in the input (starting with
the current character) that matches a
regular-expression pattern.

2. Perform the associated action.

until an action causes the next_token
method to return. If there are several
patterns that match the same (longest)
sequence of characters, then the first such
pattern is considered to be matched (so the
order of the regular-expression rules can be
important).

If an input character is not matched in any
pattern, the scanner throws an exception. It
is not good to have a scanner that can
"crash" on bad input, so it is important to
make sure that there can be no such
unmatched characters!

The regular expressions are similar to the
ones discussed in the scanner notes. Here's
how they are used to match the input:

• Most characters match themselves. For
example:

◦ abc

◦ ==

◦ while

are three patterns that match exactly
those sequences of characters (note that
writing one character after another
means "followed by" as usual).

• Characters (even special characters,
except backslash) enclosed in double
quotes match themselves. For example,
the following patterns are equivalent to
the three given above:

◦ "abc"

◦ "=="

◦ "while"

And the following pattern:

4 of 13

 "a|b"

matches the three-character
sequence: a then | then b, rather than

matching a single a or a single b.

◦ The following characters have the
usual special meanings as regular
expression operators:

| means "or"

* means zero or more instances of

+ means one or more instances of

? means zero or one instance of

() are used for grouping

◦ The dot character matches any
character except the newline
character. It is usually used in the last
rule in the specification, to match all
"bad" characters (and the associated
action issues an error message).

◦ The backslash is a special escape
character:

\n newline

\t tab

\" double quote

To match a backslash character, put
two backslashes in a character class
(see below). See the JLex Reference
Manual for a complete list of the
special characters escaped by a
backslash.

◦ The carat and dollar-sign characters:
^ and $, are special characters. When

the carat is used as the first character
in a pattern, it causes the pattern to
match only at the beginning of a line
(i.e., only if the previous character
was a newline). When the dollar sign
is used as the last character in a
pattern, it causes the pattern to
match only at the end of a line (i.e.,
only if the next character is a
newline).

5 of 13

http://www.cs.princeton.edu/~appel/modern/java/JLex
http://www.cs.princeton.edu/~appel/modern/java/JLex
http://www.cs.princeton.edu/~appel/modern/java/JLex
http://www.cs.princeton.edu/~appel/modern/java/JLex

◦ The regular expression can include
character classes, delimited by
square brackets:
◦ A character class will match one

character.
◦ If no special characters are used

inside the character class, then the
character class matches any of the
characters it includes inside its
square brackets. For example:
[abc] matches an a, or a b, or a c,

so it is the same as: a|b|c.

◦ Here are the characters that are
"special" inside a character class:

-
means a range of characters;
e.g., a-z means "a to z".

^

is only a special character if it is
the first character in the square
brackets; it means not any of the
following characters. So for
example, [^abc] matches any

character other than an a, or a

b, or a c.

\

is used as an escape character
with n, b, ", etc as usual; it can

also be used to escape the
characters that are special
inside a character class (e.g.,
[a\-z] matches an a or a - or a

z, and [\\] matches a

backslash.

"

can be used around characters
that are special inside a
character class to make them
match themselves (e.g., ["\"]
matches a backslash, and ["-"]
matches a hyphen. To include a
double-quote character in a
character class, escape it with a
backslash.

Note that whitespace only matches
itself if it is inside quotes or in a
character class; otherwise, it ends the
current pattern. So the two rules:

[a bc] {}
a|" "|b|c {}

6 of 13

are equivalent; each matches an a, or a

space, or a b, or a c, while the rule:

a bc {}

causes an error when you try to process
your specification.

TEST YOURSELF #1

Question 1: The character class [a-
zA-Z] matches any letter. Write a

character class that matches any letter
or any digit.

Question 2: Write a pattern that
matches any Pascal identifier (a
sequence of one or more letters and/or
digits, starting with a letter).

Question 3: Write a pattern that
matches any C identifier (a sequence of
one or more letters and/or digits and/or
underscores, starting with a letter or
underscore).

Question 4: Write a pattern that
matches any C identifier that does not
end with an underscore.

solution

JLex directives

Recall that the second part of a JLex
specification contains directives. This
can include specifying the value that
should be returned on end-of-file,
specifying that line counting should be
turned on, and specifying that the
scanner will be used with the Java
parser generator java cup. (See the
JLex Reference Manual for more
information about directives.)

The directives part also includes macro
definitions. The form of a macro
definition is:

7 of 13

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/manual.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/manual.html

name = regular-expression

where name is any valid Java identifier,

and regular-expression is any regular

expression as defined above. Here are
some examples:

DIGIT = [0-9]
LETTER = [a-zA-Z]
WHITESPACE = [\t\n]

Once a macro has been defined, it can
be used in a regular expression (either
to define another macro, or in the
"Regular Expression Rules" part of the
JLex specification. To use a macro, just
use its name inside curly braces. For
example, given the above macro
definitions, the following pattern could
be used to match Pascal identifiers:

{LETTER}({LETTER}|{DIGIT})*

TEST YOURSELF #2

Define a macro named NOTSPECIAL
that matches any character except a
newline, double quote, or backslash.

solution

Comments

You can include comments in the first
and second parts of your JLex
specification, but not in the third part
(because JLex will think they are part of
a pattern). JLex comments are like Java
comments: they start with two slashes,
and continue to the end of the line.

States

Recall that each regular expression rule
(a pattern and the action to be
performed when the pattern is
matched) can optionally include a list of
states at the beginning of the pattern.
For example:

8 of 13

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans2

<STATE1, STATE2>"abc" { }
is a rule that starts with a list of two
states (named STATE1 and STATE2).

Each time the scanner is called, it is in
some state. Initially, it is in a special
state called YYINITIAL. It will stay in

that state unless it matches a pattern
whose corresponding action includes
code that causes it to change to another
state. For example, given the rule:

"xyz" { yybegin(STATE1); }
if the input contains "xyz", then the call
to yybegin will be executed, and the

scanner will enter the STATE1 state.

If a rule has no list of states, then it will
be matched in any state; however, if it
has a list of states, then it will be
matched only when the scanner is in
one of those states. So for example, the
rule for "abc" given above will only be
matched after the rule for "xyz" has
been matched.

Every state other than YYINITIAL must

be declared in the JLex directives part
of the JLex specification. Here's an
example declaration:

%state STATE1

Suppose that for floating-point numbers
you want your scanner to return two
values: the value before the decimal
point, and the value after the decimal
point. Here's an example of using a
JLex state to do that (using some
pseudo-code):

 %%

 DIGIT= [0-9]
 DOT= "."

 %state DOTSTATE

 %%

 <YYINITIAL>{DIGIT}+{DOT} { yybegin(DOTSTATE);
 -- save the value so far --
 }

9 of 13

 <DOTSTATE>{DIGIT}+ { yybegin(YYINITIAL);
 -- return the saved value and the new one --
 }

TEST YOURSELF #3

A quoted string consists of three parts:

1. A double quote.
2. Some text.
3. A double quote.

The text can contain any characters
except a newline or a single double-
quote character. It can contain an
"escaped" quote, which is two double-
quote characters in a row.

Use JLex states to write a specification
to recognize quoted strings, and to
return the number of escaped quotes in
each such string. To declare a counter,
declare a class with a static, public int
field, in the "User Code" part of the
JLex specification, and update/return
that static field.

solution

yyline and yytext

If you turn line counting on (by
including %line in the "directives" part

of the specification), you can use the
variable yyline in the actions that you

write for the regular expressions. The
value of yyline will be the current line

number in the input file, counting from
zero (so to use that number in error
messages printed by your scanner, you
will need to add one to yyline).

You can also use the method yytext()
in your actions. This method returns a
String -- the sequence of characters
that was just matched.

10 of 13

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/JLEX-ANSWERS.html#ans3

A Small Example

Here is a small (complete) JLex
specification:

%%

DIGIT= [0-9]
LETTER= [a-zA-Z]
WHITESPACE= [\t\n] // space, tab, newline

// The next 3 lines are included so that we can use the generated scanner
// with java CUP (the Java parser generator)
%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol

// Turn on line counting
%line

%%

{LETTER}({LETTER}|{DIGIT})* {System.out.println(yyline+1 + ": ID " + yytext());}
{DIGIT}+ {System.out.println(yyline+1 + ": INT");}
"=" {System.out.println(yyline+1 + ": ASSIGN");}
"==" {System.out.println(yyline+1 + ": EQUALS");}
{WHITESPACE}* { }
. {System.out.println(yyline+1 + ": bad char");}

Note that the actions in this example
are not what you would really put in a
JLex specification for a scanner. Instead
of printing, the first four actions should
return the appropriate tokens.

Quick Reference Guide

Operators and Special Symbols in
JLex

The following table summarizes the
operators and special symbols used in
JLex. Note that some characters have
an entirely different meaning when
used in a regular expression and in a
character class. Character classes are
always delimited by square brackets;
they can be used in the regular
expressions that define macros, as well
as in the regular expressions used to
specify a pattern to be matched in the
input.

11 of 13

Symbol
Meaning in

Regular
Expressions

Meaning in
Character
Classes

(
Matches with
) to group sub-
expressions.

Represents
itself.

)
Matches with
(to group sub-
expressions.

Represents
itself.

[
Begins a
character
class.

Represents
itself.

] Is illegal.
Ends a
character
class.

{
Matches with
} to delimit a
macro name.

Matches with
} to delimit a
macro name.

}
Matches with
{ to delimit a
macro name.

Represents
itself or
matches with
{ to delimit a
macro name.

"

Matches with
" to delimit
strings (only \
is special
within
strings).

Matches with
" to delimit a
string of
characters
that belong to
the character
class. Only \"
is special
within the
string.

\

Escapes
special
characters (n,
t, etc). Also
used to
specify a
character by
its octal,
hexadecimal,
or unicode
value.

Escapes
characters
that are
special inside
a character
class.

.
Matches any
one character

Represents
itself.

12 of 13

except
newline.

|
Alternation
(or) operator.

Represents
itself.

*

Kleene closure
operator (zero
or more
matches).

Represents
itself.

+

Positive
closure
operator (one
or more
matches).

Represents
itself.

?

Optional
choice
operator (zero
or one
matches).

Represents
itself.

^
Matches only
at beginning
of a line.

When it is the
first character
in the
character
class,
complements
the remaining
characters in
the class.

$
Matches only
at end of a
line.

Represents
itself.

-
Represents
itself.

Range of
characters
operator.

13 of 13

Contents

• Overview
• Example: Simple Arithmetic Expressions
• Formal Definition
• Example: Boolean Expressions, Assignment

Statements, and If Statements
• Test Yourself #1
• The Language Defined by a CFG
◦ Leftmost and Rightmost Derivations
◦ Parse Trees
◦ Test Yourself #2

• Ambiguous Grammars
• Expression Grammars
◦ Precedence
◦ Associativity
▪ Test Yourself #3

◦ Test Yourself #4
• List Grammars
• A Grammar for a Programming Language
• Summary

Overview

Recall that the input to the parser is a
sequence of tokens (received interactively, via
calls to the scanner). The parser:

• Groups the tokens into "grammatical
phrases".

• Discovers the underlying structure of the
program.

• Finds syntax errors.
• Perhaps also performs some actions to find

other kinds of errors.

The output depends on whether the input is a
syntactically legal program; if so, then the
output is some representation of the program:

• an abstract-syntax tree (maybe + a symbol
table),

• or intermediate code,
• or object code.

We know that we can use regular expressions
to define languages (for example, the
languages of the tokens to be recognized by
the scanner). Can we use them to define the
language to be recognized by the parser?
Unfortunately, the answer is no. Regular

1 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#def
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#def
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#lang
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#lang
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#der
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#der
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#tree
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#tree
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ambig
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ambig
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#exp
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#exp
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#prec
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#prec
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#assoc
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#assoc
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#list
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#list
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#pl
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#pl
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#summ
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#summ

expressions are not powerful enough to define
many aspects of a programming language's
syntax. For example, a regular expression
cannot be used to specify that the
parentheses in an expression must be
balanced, or that every ``else'' statement has
a corresponding ``if''. Furthermore, a regular
expression doesn't say anything about
underlying structure. For example, the
following regular expression defines integer
arithmetic involving addition, subtraction,
multiplication, and division:

digit+ (("+" | "-" | "*" | "/") digit+)*

but provides no information about the
precedence and associativity of the operators.

So to specify the syntax of a programming
language, we use a different formalism, called
context-free grammars.

Example: Simple Arithmetic
Expressions

We can write a context-free grammar (CFG)
for the language of (very simple) arithmetic
expressions involving only subtraction and
division. In English:

• An integer is an arithmetic expression.
• If exp1 and exp2 are arithmetic expressions,

then so are the following:
• exp1 - exp2

• exp1 / exp2

• (exp1)

Here is the corresponding CFG:

exp → INTLITERAL

exp → exp MINUS exp

exp → exp DIVIDE exp

exp → LPAREN exp RPAREN

And here is how to understand the grammar:

• The grammar has five terminal symbols:
INTLITERAL MINUS DIVIDE LPAREN RPAREN.

The terminals of a grammar used to define a
programming language are the tokens
returned by the scanner.

2 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1

• The grammar has one nonterminal: exp

(note that a single name, exp, is used

instead of exp1 and exp2 as in the English

definition above).

• The grammar has four productions or
rules, each of the form: exp → ... A

production left-hand side is a single
nonterminal. A production right-hand side is

either the special symbol (the same that

can be used in a regular expression) or a
sequence of one or more terminals and/or

nonterminals (there is no rule with on the

right-hand side in the example given above).

A more compact way to write this grammar is:

exp → INTLITERAL | exp MINUS exp |

exp DIVIDE exp | LPAREN exp RPAREN

Intuitively, the vertical bar means ``or'', but
do not be fooled into thinking that the right-
hand sides of grammar rules can contain
regular expression operators! This use of the
vertical bar is just shorthand for writing
multiple rules with the same left-hand-side
nonterminal.

Formal Definition

A CFG is a 4-tuple where:

• is a set of nonterminals.

• is a set of terminals.

• is a set of productions (or rules).

• is the start nonterminal (sometimes called

the goal nonterminal) in . If not specified,

then it is the nonterminal that appears on
the left-hand side of the first production.

Example: Boolean Expressions,
Assignment Statements, and If
Statements

The language of boolean expressions can be
defined in English as follows:

• "true" is a boolean expression, recognized
by the token TRUE.

• "false" is a boolean expression, recognized
by the token FALSE.

ε ε

ε

(N,Σ, P, S)

N

Σ

P

S

N

3 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#def
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#def

• If exp1 and exp2 are boolean expressions,

then so are the following:
◦ exp1 || exp2

◦ exp1 && exp2

◦ ! exp1

◦ (exp1)

Here is the corresponding CFG:

bexp → TRUE

bexp → FALSE

bexp → bexp OR bexp

bexp → bexp AND bexp

bexp → NOT bexp

bexp → LPAREN bexp RPAREN

Here is a CFG for a language of very simple
assignment statements (only statements that
assign a boolean value to an identifier):

stmt → ID ASSIGN bexp SEMICOLON

We can ``combine'' the two grammars given
above, and add two more rules to get a
grammar that defines the language of (very
simple) if statements. In words, an if
statement is:

1. The word "if", followed by a boolean
expression in parentheses, followed by a
statement, or

2. The word "if", followed by a boolean
expression in parentheses, followed by a
statement, followed by the word "else",
followed by a statement.

And here's the grammar:

stmt → IF LPAREN bexp RPAREN stmt

stmt → IF LPAREN bexp RPAREN stmt

ELSE stmt

stmt → ID ASSIGN bexp SEMICOLON

bexp → TRUE

bexp → FALSE

bexp → bexp OR bexp

bexp → bexp AND bexp

bexp → NOT bexp

bexp → LPAREN bexp RPAREN

TEST YOURSELF #1

4 of 16

Write a context-free grammar for the
language of very simple while loops (in which
the loop body only contains one statement) by
adding a new production with nonterminal
stmt on the left-hand side.

solution

The Language Defined by
a CFG

The language defined by a context-free
grammar is the set of strings (sequences of
terminals) that can be derived from the start
nonterminal. What does it mean to derive
something?

• Start by setting the "current sequence" to
be the start nonterminal.

• Repeat:

◦ find a nonterminal in the current

sequence;

◦ find a production in the grammar with

on the left (i.e., of the form → , where

 is either (the empty string) or a

sequence of terminals and/or
nonterminals);

◦ Create a new "current sequence" in which

 replaces the found above;

until the current sequence contains no
nonterminals.

Thus we arrive either at epsilon or at a string
of terminals. That is how we derive a string in
the language defined by a CFG.

Below is an example derivation, using the 4
productions for the grammar of arithmetic
expressions given above. In this derivation,
we use the actual lexemes instead of the
token names (e.g., we use the symbol "-"
instead of MINUS).

exp exp - exp 1 - exp 1 - exp / exp

 1 - exp / 2 1 - 4 / 2

And here is some useful notation:

 means derives in one step

X

X

X α

α ε

α X

⟶ ⟶ ⟶

⟶ ⟶

⟹

5 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#lang
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#lang
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#lang
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#ex1

 means derives in one or more steps

 means derives in zero or more steps

So, given the above example, we could write:

exp 1 - exp / exp.

A more formal definition of what it means for

a CFG to define a language may be stated

as follows:

where

• is the start nonterminal of

• is a sequence of terminals or

Leftmost and Rightmost
Derivations

There are several kinds of derivations that are
important. A derivation is a leftmost
derivation if it is always the leftmost
nonterminal that is chosen to be replaced. It
is a rightmost derivation if it is always the
rightmost one.

Parse Trees

Another way to derive things using a context-
free grammar is to construct a parse tree
(also called a derivation tree) as follows:

• Start with the start nonterminal.
• Repeat:

◦ choose a leaf nonterminal

◦ choose a production

◦ the symbols in become the children of

in the tree
until there are no more leaf nonterminals
left.

The derived string is formed by reading the
leaf nodes from left to right.

Here is the example expression grammar
given above:

⟹

+

⟹

∗

⟹

+

G

L(G) = {w|S w}⟶

+

S G

w ε

X

X ⟶ α

α X

6 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#der
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#der
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#der
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#tree
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#tree

exp → INTLITERAL

exp → exp MINUS exp

exp → exp DIVIDE exp

exp → LPAREN exp RPAREN

and, using that grammar, here's a parse tree
for the string 1 - 4 / 2:

TEST YOURSELF #2

Below is the CFG for very simple if statements
used earlier.

stmt → IF LPAREN bexp RPAREN stmt

stmt → IF LPAREN bexp RPAREN stmt

ELSE stmt

stmt → ID ASSIGN bexp SEMICOLON

bexp → TRUE

bexp → FALSE

bexp → bexp OR bexp

bexp → bexp AND bexp

bexp → NOT bexp

bexp → LPAREN bexp RPAREN

Question 1: Give a derivation for the string:
if (! true) x = false; Is your derivation

leftmost, rightmost, or neither?

Question 2: Give a parse tree for the same
string.

solution

7 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans2

Ambiguous Grammars

The string 1 - 4 / 2 has two parse trees

using the example expression grammar. One
was given above; here's the other one:

If for grammar and string there is:

• more than one leftmost derivation of or,

• more than one rightmost derivation of , or

• more than one parse tree for

then G is called an ambiguous grammar.
(Note: the three conditions given above are
equivalent; if one is true then all three are
true.)

In general, ambiguous grammars cause
problems:

• Ambiguity can make parsing difficult.
• The underlying structure of the language

defined by an ambiguous grammar is ill-
defined (in the above example, the relative
precedences of subtraction and division are
not uniquely defined; the first parse tree
groups 4/2 while the second groups 1-4, and
those two groupings correspond to
expressions with different values).

Expression Grammars

Since every programming language includes
expressions, it is useful to know how to write
a grammar for an expression language so that

G w

w

w

w

8 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#exp
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#exp

the grammar correctly reflects the
precedences and associativities of the
operators.

Precedence

To write a grammar whose parse trees
express precedence correctly, use a different
nonterminal for each precedence level. Start
by writing a rule for the operator(s) with the
lowest precedence ("-" in our case), then write
a rule for the operator(s) with the next lowest
precedence, etc:

exp → exp MINUS exp | term

term → term DIVIDE term | factor

factor → INTLITERAL | LPAREN exp

RPAREN

Now let's try using these new rules to build
parse trees for 1 - 4 / 2. First, a parse tree

that correctly reflects that fact that division
has higher precedence than subtraction:

Now we'll try to construct a parse tree that
shows the wrong precedence:

9 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/prec
https://pages.cs.wisc.edu/~hasti/cs536/readings/prec

Associativity

This grammar captures operator precedence,
but it is still ambiguous! Parse trees using this
grammar may not correctly express the fact
that both subtraction and division are left
associative; e.g., the expression: 5-3-2 is

equivalent to: ((5-3)-2) and not to:

(5-(3-2)).

TEST YOURSELF #3

Draw two parse trees for the expression
5-3-2 using the current expression grammar:

exp → exp MINUS exp | term

term → term DIVIDE term | factor

factor → INTLITERAL | LPAREN exp

RPAREN

One of your parse trees should correctly
group 5-3, and the other should incorrectly

group 3-2.

solution

10 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#assoc
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#assoc
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans3

To understand how to write expression
grammars that correctly reflect the
associativity of the operators, you need to
understand about recursion in grammars.

• A grammar is recursive in nonterminal if:

(in one or more steps, derives a sequence

of symbols that includes an).

• A grammar is left recursive in if:

(in one or more steps, derives a sequence

of symbols that starts with an).

• A grammar is right recursive in if:

(in one or more steps, derives a sequence

of symbols that ends with an).

The grammar given above for arithmetic
expressions is both left and right recursive in
nonterminals exp and term (can you write the

derivation steps that show this?).

To write a grammar that correctly expresses
operator associativity:

• For left associativity, use left recursion.
• For right associativity, use right recursion.

Here's the correct grammar:

exp → exp MINUS term | term

term → term DIVIDE factor | factor

factor → INTLITERAL | LPAREN exp

RPAREN

And here's the (one and only) parse tree that
can be built for 5 - 3 - 2 using this

grammar:

X

X …X…⟶

+

X

X

X

X X. . .⟶

+

X

X

X

X …X⟶

+

X

X

11 of 16

Now let's consider a more complete
expression grammar, for arithmetic
expressions with addition, multiplication, and
exponentiation, as well as subtraction and
division. We'll use the token POW for the
exponentiation operator, and we'll use "**" as
the corresponding lexeme; e.g., "two to the
third power" would be written: 2 ** 3, and

the corresponding sequence of tokens would
be: INTLITERAL POW INTLITERAL. Here's an

ambiguous context-free grammar for this
language:

exp→
exp PLUS exp | exp MINUS exp |

exp TIMES exp | exp DIVIDE exp

|
exp POW exp | LPAREN exp RPAREN |

INTLITERAL

First, we'll modify the grammar so that parse
trees correctly reflect the fact that addition
and subtraction have the same, lowest
precedence; multiplication and division have
the same, middle precedence; and
exponentiation has the highest precedence:

exp →
exp PLUS

exp

| exp

MINUS

exp

| term

12 of 16

term →
term TIMES

term

| term

DIVIDE

term

|

factor

factor →
factor POW

factor

|

exponent

exponent → INTLITERAL

| LPAREN

exp

RPAREN

This grammar is still ambiguous; it does not
yet reflect the associativities of the operators.
So next we'll modify the grammar so that
parse trees correctly reflect the fact that all of
the operators except exponentiation are left
associative (and exponentiation is right
associative; e.g., 2**3**4 is equivalent to:

2**(3**4)):

exp
→ exp PLUS

term

| exp

MINUS

term

| term

term

→ term

TIMES

factor

| term

DIVIDE

factor

|

factor

factor
→ exponent

POW factor

|

exponent

exponent
→

INTLITERAL

| LPAREN

exp

RPAREN

Finally, we'll modify the grammar by adding a
unary operator, unary minus, which has the
highest precedence of all (e.g., -3**4 is

equivalent to: (-3)**4, not to -(3**4). Note

that the notion of associativity does not apply
to unary operators, since associativity only
comes into play in an expression of the form:
x op y op z.

exp
→ exp PLUS

term

| exp

MINUS

term

| term

term

→ term

TIMES

factor

| term

DIVIDE

factor

|

factor

factor
→ exponent

POW factor

|

exponent

13 of 16

exponent
→ MINUS

exponent
| final

final
→

INTLITERAL

| LPAREN

exp

RPAREN

TEST YOURSELF #4

Below is the grammar we used earlier for the
language of boolean expressions, with two
possible operands: true false, and three

possible operators: and or not:

bexp → TRUE

bexp → FALSE

bexp → bexp OR bexp

bexp → bexp AND bexp

bexp → NOT bexp

bexp → LPAREN bexp RPAREN

Question 1: Add nonterminals so that or has

lowest precedence, then and, then not. Then

change the grammar to reflect the fact that
both and and or are left associative.

Question 2: Draw a parse tree (using your
final grammar for Question 1) for the
expression: true and not true.

solution

List Grammars

Another kind of grammar that you will often
need to write is a grammar that defines a list
of something. There are several common
forms. For each form given below, we provide
three different grammars that define the
specified list language.

• One or more PLUSes (without any separator

or terminator). (Remember, any of the
following three grammars defines this
language; you don't need all three lines).

1. xList PLUS | xList xList

2. xList PLUS | xList PLUS

3. xList PLUS | PLUS xList

• One or more runs of one or more PLUSes,

⟶

⟶

⟶

14 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CFG-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/list
https://pages.cs.wisc.edu/~hasti/cs536/readings/list

each run separated by commas:

1. xList PLUS | xList COMMA xList

2. xList PLUS | xList COMMA PLUS

3. xList PLUS | PLUS COMMA xList

• One or more PLUSes, each PLUS terminated

by a semi-colon:

1. xList PLUS SEMICOLON | xList xList

2. xList PLUS SEMICOLON | xList PLUS

SEMICOLON

3. xList PLUS SEMICOLON | PLUS

SEMICOLON xList

• Zero or more PLUSes (without any separator

or terminator):

1. xList | PLUS | xList xList

2. xList | PLUS | xList PLUS

3. xList | PLUS | PLUS xList

• Zero or more PLUSes, each PLUS terminated

by a semi-colon:

1. xList | PLUS SEMICOLON | xList

xList

2. xList | PLUS SEMICOLON | xList

PLUS SEMICOLON

3. xList | PLUS SEMICOLON | PLUS

SEMICOLON xList

• The trickiest kind of list is a list of zero or
more x's, separated by commas. To get it
right, think of the definition as follows:

Either an empty list, or a non-empty list of
x's separated by commas.

We already know how to write a grammar
for a non-empty list of x's separated by
commas, so now it's easy to write the
grammar:

xList | nonemptyList

nonemptyList
PLUS | PLUS COMMA

nonemptyList

A Grammar for a
Programming Language

To write a grammar for a whole programming
language, break down the problem into
pieces. For example, think about a simple Java
program, which consists of one or more
classes:

program classList

classlist class | class classList

⟶

⟶

⟶

⟶

⟶

⟶

⟶ ε

⟶ ε

⟶ ε

⟶ ε

⟶ ε

⟶ ε

⟶ ε

⟶

⟶

⟶

15 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#pl
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#pl
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#pl

A class is the word "class", optionally
preceded by the word "public", followed by an
identifier, followed by an open curly brace,
followed by the class body, followed by a
closing curly brace:

class
PUBLIC CLASS ID LCURLY classbody

RCURLY

|
 CLASS ID LCURLY classbody

RCURLY

A class body is a list of zero or more field
and/or method definitions:

classbody

| deflist

deflist def

| def deflist

and so on.

Summary

To understand how a parser works, we start
by understanding context-free grammars,
which are used to define the language
recognized by the parser. Important
terminology includes:

• terminal symbol
• nonterminal symbol
• grammar rule (or production)
• derivation (leftmost derivation, rightmost

derivation)
• parse (or derivation) tree
• the language defined by a grammar
• ambiguous grammar

Two common kinds of grammars are
grammars for expression languages, and
grammar for lists. It is important to know
how to write a grammar for an expression
language that expresses operator precedence
and associativity. It is also important to know
how to write grammars for both non-empty
and possibly empty lists, and for lists both
with and without separators and terminators.

⟶

⟶ ε

⟶

16 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#summ
https://pages.cs.wisc.edu/~hasti/cs536/readings/CFGs.html#summ

Contents

• Motivation and Definition
• Example 1: Value of an Arithmetic Expression
• Example 2: Type of an Expression
• Test Yourself #1
• Building an Abstract-Syntax Tree
◦ The AST vs the Parse Tree
◦ Translation Rules That Build an AST
◦ Test Yourself #2

Motivation and Definition

Recall that the parser must produce output (e.g., an abstract-
syntax tree) for the next phase of the compiler. This involves
doing a syntax-directed translation -- translating from a
sequence of tokens to some other form, based on the
underlying syntax.

A syntax-directed translation is defined by augmenting the
CFG: a translation rule is defined for each production. A
translation rule defines the translation of the left-hand side
nonterminal as a function of:

• constants
• the right-hand-side nonterminals' translations
• the right-hand-side tokens' values (e.g., the integer value

associated with an INTLITERAL token, or the String value

associated with an ID token)

To translate an input string:

1. Build the parse tree.
2. Use the translation rules to compute the translation of

each nonterminal in the tree, working bottom up (since
a nonterminal's value may depend on the value of the
symbols on the right-hand side, you need to work
bottom-up so that those values are available).

The translation of the string is the translation of the parse
tree's root nonterminal.

Example 1

Below is the definition of a syntax-directed translation that
translates an arithmetic expression to its integer value.
When a nonterminal occurs more than once in a grammar
rule, the corresponding translation rule uses subscripts to
identify a particular instance of that nonterminal. For

example, the rule exp exp PLUS term has two exp

nonterminals; exp1 means the left-hand-side exp, and exp2
means the right-hand-side exp. Also, the notation xxx.value

is used to mean the value associated with token xxx.

CFG Production Translation rules

exp exp PLUS term
exp1.trans = exp2.trans

+ term.trans

exp term exp.trans = term.trans

term
term TIMES

factor

term1.trans =

term2.trans * factor.trans

term factor term.trans = factor.trans

factor INTLITERAL
factor.trans =
INTLITERAL.value

factor
LPARENS exp

RPARENS
factor.trans = exp.trans

→

⟶

⟶

⟶

⟶

⟶

⟶

1 of 7

https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ast
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ast
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#astVsParse
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#astVsParse
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex1

consider evaluating these rules on the input 2 * (4 + 5).

The result is the following annotated parse tree:

Example 2

Consider a language of expressions that use the three
operators: +, &&, == using the terminal symbols PLUS, AND ,

EQUALS, respectively. Integer literals are represented by the

same INTLITERAL token we've used before, and TRUE and

FALSE represent the literals true and false (note that we

could have just as well defined a single BOOLLITERAL token

that the scanner would populate with either true or false).

Let's define a syntax-directed translation that type checks
these expressions; i.e., for type-correct expressions, the
translation will be the type of the expression (either int or
bool), and for expressions that involve type errors, the
translation will be the special value error. We'll use the
following type rules:

1. Both operands of the + operator must be of type int.
2. Both operands of the && operator must be of type bool.
3. Both operands of the == operator must have the same

(non-error) type.

Here is the CFG and the translation rules:

CFG Production Translation rules

exp exp PLUS term

if (exp2.trans ==

int and (term.trans
== int) then
 exp1.trans =

int
else
 exp1.trans =

error

⟶

2 of 7

https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ex2

exp exp AND term

if (exp2.trans ==

bool and
(term.trans ==
bool) then
 exp1.trans =

bool
else
 exp1.trans =

error

exp exp EQUALS term

if (exp2.trans ==

term.trans) and

(term.trans

error) then
 exp1.trans =

bool
else
 exp1.trans =

error

exp term
exp.trans =
term.trans

term TRUE term.trans = bool

term FALSE term.trans = bool

term INTLITERAL term.trans = int

term LPARENS exp RPARENS
term.trans =
exp.trans

Here's an annotated parse tree for the input (2 + 2) == 4

⟶

⟶

≠

⟶

⟶

⟶

⟶

⟶

3 of 7

TEST YOURSELF #1

The following grammar defines the language of base-2
numbers:

B -> 0

 -> 1

 -> B 0

 -> B 1

Define a syntax-directed translation so that the translation of
a binary number is its base 10 value. Illustrate your
translation scheme by drawing the parse tree for 1001 and

annotating each nonterminal in the tree with its translation.

solution

Building an Abstract-Syntax Tree

So far, our example syntax-directed translations have
produced simple values (an int or a type) as the translation
of an input. In practice however, we want the parser to build
an abstract-syntax tree as the translation of an input
program. But that is not really so different from what we've
seen so far; we just need to use tree-building operations in
the translation rules instead of, e.g., arithmetic operations.

The AST vs the Parse Tree

First, let's consider how an abstract-syntax tree (AST) differs
from a parse tree. An AST can be thought of as a condensed
form of the parse tree:

• Operators appear at internal nodes instead of at leaves.
• "Chains" of single productions are collapsed.

4 of 7

https://pages.cs.wisc.edu/~hasti/cs536/readings/sdt_answers.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/sdt_answers.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ast
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#ast
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#astVsParse
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#astVsParse

• Lists are "flattened".
• Syntactic details (e.g., parentheses, commas, semi-colons)

are omitted.

In general, the AST is a better structure for later stages of
the compiler because it omits details having to do with the
source language, and just contains information about the
essential structure of the program.

Below is an example of the parse tree and the AST for the
expression 3 * (4 + 2) (using the usual arithmetic-

expression grammar that reflects the precedences and
associativities of the operators). Note that the parentheses
are not needed in the AST because the structure of the AST
defines how the subexpressions are grouped.

For constructs other than expressions, the compiler writer
has some choices when defining the AST -- but remember
that lists (e.g., lists of declarations lists of statements, lists of
parameters) should be flattened, that operators (e.g.,
"assign", "while", "if") go at internal nodes, not at leaves, and
that syntactic details are omitted.

For example:

Input

=====

{

 x = 0;

 while (x<10) {

 x = x+1;

 }

 y = x*2;

}

Parse Tree:

5 of 7

Abstract Syntax Tree:

Note that in the AST there is just one stmtList node, with a

list of three children (the list of statements has been
"flattened"). Also, the "operators" for the statements (assign

and while) have been "moved up" to internal nodes (instead

of appearing as tokens at the leaves). And finally, syntactic
details (curly braces and semi-colons) have been omitted.

Translation Rules That Build an
AST

To define a syntax-directed translation so that the translation
of an input is the corresponding AST, we first need
operations that create AST nodes. Let's use java code, and
assume that we have the following class hierarchy:

6 of 7

https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/SDT.html#trans

class ExpNode { }

class IntLitNode extends ExpNode {

 public IntLitNode(int val) {...}

}

class PlusNode extends ExpNode {

 public PlusNode(ExpNode e1, ExpNode e2) { ... }

}

class TimesNode extends ExpNode {

 public TimesNode(ExpNode e1, ExpNode e2) { ... }

}

Now we can define a syntax-directed translation for simple
arithmetic expressions, so that the translation of an
expression is its AST:

CFG Production Translation rules

exp
exp PLUS

term

exp1.trans = new

PlusNode(exp2, term.trans)

exp term exp.trans = term.trans

term
term TIMES

factor

term1.trans = new

TimesNode(term2.trans,

factor.trans)

term factor term.trans = factor.trans

factor INTLITERAL
factor.trans = new
IntLitNode(INTLITERAL.value)

factor

LPARENS

exp
RPARENS

factor.trans = exp.trans

TEST YOURSELF #2

Illustrate the syntax-directed translation defined above by
drawing the parse tree for the expression 2 + 3 * 4, and

annotating the parse tree with its translation (i.e., each
nonterminal in the tree will have a pointer to the AST node
that is the root of the subtree of the AST that is the
nonterminal's translation).

solution

⟶

⟶

⟶

⟶

⟶

⟶

7 of 7

https://pages.cs.wisc.edu/~hasti/cs536/readings/sdt_answers.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/sdt_answers.html#ans2

Contents

• Overview
• User Code
• Terminal and Nonterminal Declarations
• Precedence Declarations
• Grammar Rules
• How to Run Java Cup

Overview

There is a link to the Java Cup User's Manual under
"Useful Programming Tools" on the class web page.
Here is the same link.

Java Cup is a parser generator that produces a parser
written in Java. Here's a picture illustrating how to
create a parser using Java Cup:

The input to Java Cup is a specification that includes:

• optional package and import declarations
• optional user code
• terminal and nonterminal declarations
• optional precedence and associativity declarations
• grammar rules with associated actions

The key part of the specification is the last part: the
grammar rules with associated actions. Those actions
are like the syntax-directed translations rules that we
have studied; i.e., they define how to translate an input
sequence of tokens into some value (e.g., an abstract-
syntax tree).

The output of Java Cup includes a Java source file
named parser.java, which defines a class named
parser with a method named parse. Java Cup also
produces a Java source file named sym.java, which
contains a class named sym that declares one public
final static int for each terminal declared in the Java
Cup specification.

The parser class has a one-argument constructor; the
argument is of type Yylex (i.e., a scanner). The parse
method of the parser class uses the given scanner to
translate the input (the input stream is an argument
passed to the scanner's constructor) to a sequence of
tokens. It parses the tokens according to the given
grammar, and does a syntax-directed translation of the
input using the actions associated with the grammar
productions. If the input is not syntactically correct,
the parser gives an error message and quits (i.e., it
only finds the first syntax error); otherwise, it returns a
Symbol whose value field contains the translation of
the root nonterminal (as defined by the actions
associated with the grammar rules).

1 of 4

https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#userCode
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#userCode
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#terminals
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#terminals
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#prec
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#prec
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#rules
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#rules
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#run
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#run
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html

User Code

See the Java Cup Reference Manual for a description of
this part of the specification.

Terminal and Nonterminal
Declarations

All terminal and nonterminal symbols that appear in
the grammar must be declared. If you want to make
use of the value associated with a terminal (the value
field of the Symbol object returned by the scanner for

that token) in your syntax-directed translation, then
you must also declare the type of that value field.
Similarly, you must declare the types of the
translations associated with all of the nonterminals.

terminal name1, name2, ... ; /* terminals without values */
terminal type name1, name2, ... ; /* terminals with values */
non terminal type name1, name2, ... ; /* nonterminals */

Note that Java Cup has some reserved words (e.g.,
action, parser, import); these cannot be used as
terminal or nonterminal names.

Precedence Declarations

A grammar like:

exp -> exp PLUS exp | exp MINUS exp | exp TIMES exp | exp EQUALS exp | ...

is ambiguous, and will cause conflicts: the parser will
not always know how to parse an input. One way to fix
the problem is to rewrite the grammar by adding new
nonterminals; however, this can make the grammar
less clear (and the parser less efficient). Another
option is to include precedence declarations that
specify the relative precedences of the operators, as
well as their associativities.

For example:

precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
precedence nonassoc EQUALS;

The order of precedence is low to high (i.e., in this
example, PLUS and MINUS are given the lowest
precedence, then TIMES and DIVIDE, then EQUALS).
The left, right, and nonassoc declarations specify the
associativity of the operators. Declaring an operator
nonassoc means that it is not legal to have two
consecutive occurrences of such operators with the
same precedence (so for example, given the above
declarations, the expression: a == b == c would cause

a syntax error).

Sometimes the same operator is used as both a unary
and a binary operator, and the two uses have different
precedence levels (for example, binary minus usually
has a low precedence, while unary minus has a high
precedence). This case can be handled either by
rewriting the grammar, or by declaring a "phony"
terminal symbol (e.g., UMINUS), giving it the

2 of 4

http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html

appropriate precedence, and using it in the grammar
rules part of the specification to specify the
precedence of the operator in a particular rule (see
below).

Grammar Rules

The heart of the Java Cup specification is the set of
grammar rules. First, there is an optional declaration
of the start nonterminal; e.g.:

start with program;

If no such declaration is included, the left-hand-side
nonterminal of the first grammar rule is assumed to be
the start nonterminal.

Below are three example grammar rules, preceded by
the appropriate terminal and nonterminal declarations.
Note that IdTokenVal is a type that was defined in the

scanner specification; VarDeclNode, TypeNode, and

IdNode are all subclasses of an ASTnode class, all

defined in some other file; and IntNode and BoolNode
are subclasses of TypeNode (defined in that same file).

terminal SEMICOLON;
terminal INT;
terminal IdTokenVal ID;

non terminal VarDeclNode varDecl;
non terminal TypeNode type;
non terminal IdNode id;

varDecl ::= type:t id:i SEMICOLON
 {: RESULT = new VarDeclNode(t, i);
 :}
 ;

type ::= INT
 {: RESULT = new IntNode();
 :}
 ;

id ::= ID:i
 {: RESULT = new IdNode(i.idVal);
 :}
 ;

In these rules, lower-case names are used for
nonterminals, and upper-case names are used for
terminals. The symbol "::=" is used instead of an arrow
to separate the left and right-hand sides of the
grammar rule. Each grammar rule ends with a
semicolon.

The symbols "{:" and ":}" are used to delimit the
action associated with the rule. An action can contain
arbitrary Java code (including declarations and uses of
local variables). If the left-hand-side nonterminal has
been declared to have a type, the action must include
an assignment to the special variable RESULT; this
assignment sets the value of the nonterminal (its
translation).

To use the translations of the right-hand-side
nonterminals, and the values of the right-hand-side
tokens, those symbols are followed with a colon and a
name. For example, using type:t makes t the name of

3 of 4

https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#uminus
https://pages.cs.wisc.edu/~hasti/cs536/readings/CUP.html#uminus

the translation of nonterminal type, and using ID:i
makes i the name of the value field of the Symbol
returned by the scanner for the ID token.

Precedence Declarations for Grammar
Rules

As discussed above, sometimes an operator needs
different precedences depending on whether it is being
used as a unary or a binary operator. For example, the
precedence declarations given above gave MINUS the
lowest precedence. This is correct for binary minus,
but not for unary minus (which should have the highest
precedence). To handle this, a new terminal (e.g.,
UMINUS) can be declared, and given the highest
precedence. Then the grammar rule that uses MINUS
as a unary operator can be declared to have the (high)
precedence of UMINUS:

exp ::= MINUS exp
{: RESULT = ...
:}
%prec UMINUS
;

How to Run Java Cup

To run the parser generator, type:

java java_cup.Main < xxx.cup

where xxx.cup is the name of the parser specification

(it can have any name, but using the .cup extension

helps to make it clear that it is a Java Cup
specification). If the specification is processed without
errors, two Java source files, parser.java and

sym.java will be produced.

4 of 4

Contents

• LL(1) Grammars and Predictive Parsers
• Test Yourself #1
• Grammar Transformations
◦ Left Recursion
◦ Left Factoring
◦ Test Yourself #2

• FIRST and FOLLOW Sets
◦ FIRST
◦ FOLLOW

• Test Yourself #3
• How to Build Parse Tables
◦ Test Yourself #4

• How to Code a Predictive Parser
• Test Yourself #5

LL(1) Grammars and
Predictive Parsers

LL(1) grammars are parsed by top-down
parsers. They construct the derivation tree
starting with the start nonterminal and
working down. One kind of parser for LL(1)
grammars is the predictive parser. The idea
is as follows:

• "Build" the parse tree top down (don't
actually build it, just discover what it
would be).

• Keep track of "work to be done" using a
stack of terminals and nonterminals; the
scanned tokens together with the stack
contents correspond to the leaves of the
current (incomplete) parse tree.

• Also use a parse table (or selector table)
to decide how to do the parse. The rows
of the table are indexed by the
nonterminals of the grammar, and the
columns are indexed by the tokens
(including the special EOF token). Each
element of the table for the row indexed
by nonterminal X is either empty or
contains the right-hand side of a grammar
rule for X.

Here's how the predictive parser works:

1 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#ll1
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#ll1
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#trans
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftRec
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftRec
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftFact
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftFact
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#firstFollow
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#firstFollow
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#first
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#first
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#follow
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#follow
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#tables
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#tables
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#code
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#code
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry5
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#youtry5

• Start by pushing the special "EOF"
terminal onto the stack, then push the
start nonterminal and call the scanner to
get the first token t.

• Repeat:
◦ If the top-of-stack symbol is a

nonterminal :

◦ Use nonterminal and the current

token t to index into the parse table

to choose a production with on the

left-hand side (the one whose right-

hand side is in Table).

◦ Pop the from the stack and push the

chosen production's right-hand side
(push the symbols one at a time, from
right to left).

◦ If the top-of-stack symbol is a terminal,
match it with the current token. If it
matches, pop it and call the scanner to
get the next token.

• until one of the following happens:
◦ Top-of-stack is a nonterminal, and the

parse table entry is empty: reject the
input.

◦ Top-of-stack is a terminal but doesn't
match the current token: reject the
input.

◦ Stack is empty: accept the input.

Here's a very simple example, using a
grammar that defines the language of
balanced parentheses or square brackets,
and running the parser on the input "([]
) EOF". Note that in the examples on this
page we will use sometimes name
terminal symbols using single characters
(such as: (,), [, and]) instead of the
token names (lparen, rparen, etc). Also
note that in the picture, the top of stack is
to the left.

Grammar:

 | () | []

Parse
Table:

() [] EOF

(

)

[

]

X

X

X

[X][t]

X

S ⟶ ε S S

S
S

ε
S

ε ε

2 of 23

Input
seen so

far
stack Action

(EOF pop, push ()

(
()

EOF
pop, scan

([
)

EOF
pop, push []

([
[])

EOF
pop, scan

([]
])

EOF

pop, push
nothing

([]
])

EOF
pop, scan

([])) EOF pop, scan

([])

EOF
EOF pop, scan

([])

EOF

empty stack:
input accepted

Remember, it is not always possible to
build a predictive parser given a CFG;
only if the CFG is LL(1). For example, the
following grammar is not LL(1) (but it is
LL(2)):

() | [] | () | []

If we try to parse an input that starts with
a left paren, we are in trouble! We don't
know whether to choose the first

production: (), or the third one:

(). If the next token is a right paren,

we want to push "()". If the next token is
a left paren, we want to push the three

symbols "()". So here we need two

tokens of look-ahead.

TEST YOURSELF #1

Draw a picture like the one given above

S S

S

S
S

S

S

S ⟶ S S

S ⟶ S S

⟶

S

3 of 23

to illustrate what the parser for the
grammar:

S -> epsilon | (S) | [S]

does on the input: "[[]]".

solution

Grammar
Transformations

We need to answer two important
questions:

1. How to tell whether a grammar is
LL(1).

2. How to build the parse (or selector)
table for a predictive parser, given
an LL(1) grammar.

It turns out that there is really just one
answer: if we build the parse table and no
element of the table contains more than
one grammar rule right-hand side, then
the grammar is LL(1).

Before saying how to build the table we
will consider two properties that preclude
a context-free grammar from being LL(1):
left-recursive grammars and grammars
that are not left factored. We will also
consider some transformations that can
be applied to such grammars to make
them LL(1).

First, we will introduce one new
definition:

A nonterminal is useless if either:

1. You can't derive a sequence that

includes , or

2. You can't derive a string from

(where "string" means epsilon or a
sequence of terminals).

Here are some examples of useless
nonterminals :

X

X

X

4 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans1

For case 1:

+ | - |

digit | digit

.

For case 2:

 |

()

()

 just derives more and more

nonterminals, so it is useless.

From now on "context-free grammar"
means a grammar without useless
nonterms.

Left Recursion

◦ A grammar is recursive in a

nonterminal if can derive a

sequence of symbols that includes , in

one or more steps:

where and are arbitrary sequences

of symbols.

◦ is left recursive in nonterminal if

 can derive a sequence of symbols that

starts with , in one or more steps:

where is an arbitrary sequence of

symbols.
◦ G is immediately left recursive in

nonterminal if can derive a

sequence of symbols that starts with X
in one step:

S ⟶ A B

A ⟶ ε

B ⟶ B

C ⟶ B

S ⟶ X Y

X ⟶

Y ⟶ Y Y

Y

G

X X

X

X αXβ⟹

+

α β

G X

X

X

X Xβ⟹

+

β

X X

X ⟹ Xβ

5 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftRec
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftRec

i.e., the grammar includes the

production: .

In general, it is not a problem for a
grammar to be recursive. However, if a
grammar is left recursive, it is not LL(1).
Fortunately, we can change a grammar to
remove immediate left recursion without
changing the language of the grammar.
Here is how to do the transformation:

Given two productions of the form:

where:

◦ is a nonterminal

◦ is a sequence of terminals and/or

nonterminals

◦ is a sequence of terminals and/or

nonterminals not starting with

Replace those two productions with the
following three productions:

 A`

A` A` |

where A` is a new nonterminal.

Using this rule, we create a new grammar
from a grammar with immediate left
recursion. The new grammar is
equivalent to the original one; i.e., the
two grammars derive exactly the same
sets of strings, but the new one is not
immediately left recursive (and so has a
chance of being LL(1)).

To illustrate why the new grammar is
equivalent to the original one, consider
the parse trees that can be built using the
original grammar:

X ⟶ Xβ

A ⟶ A α

| β

A

α

β

A

A ⟶ β

⟶ α ε

6 of 23

A

β

A

A α

β

A

A α

A α

β

 etc.

Note that the derived strings are:

◦

◦

◦

...

That is, they are of the form "beta,
followed by zero or more alphas". The
new grammar derives the same set of
strings, but the parse trees have a
different shape (the single "beta" is
derived right away, and then the zero or
more alphas):

A

A`β

ε

A

A`β

α A`

ε

β

β α

β α α

7 of 23

A

A`β

α A`

α A`

ε

A`

A`

A`

 etc.

Consider, for instance, the grammar for
arithmetic expressions involving only
subtraction:

Exp Exp minus Factor | Factor

Factor intliteral | (Exp)

Notice that the first rule (Exp Exp

minus Factor) has immediate left
recursion, so this grammar is not LL(1).
(For example, if the first token is
intliteral, you don't know whether to

choose the production Exp Exp minus

Factor, or Exp Factor. If the next token

is minus, then you should choose

Exp Exp minus Factor, but if the next

token is EOF, then you should choose

Exp Factor.

Using the transformation defined above,
we remove the immediate left recursion,
producing the following new grammar:

Exp Factor Exp`

Exp` minus Factor Exp` |

Factor intliteral | (Exp)

Let's consider what the predictive parser
built using this grammar does when the
input starts with an integer:

◦ The predictive parser starts by pushing
EOF, then Exp onto the stack.
Regardless of what the first token is,
there is only one production with Exp
on the left-hand side, so it will always

⟶

⟶

⟶

⟶

⟶

⟶

⟶

⟶

⟶

⟶

8 of 23

pop the Exp from the stack and push
Factor Exp` as its first action.

◦ Now the top-of-stack symbol is the
nonterminal Factor. Since the input is
the intliteral token (not the (token) it
will pop the Factor and push intliteral.

◦ The top-of-stack symbol is now a
terminal (intliteral), which does match
the current token, so the stack will be
popped, and the scanner called to get
the next token.

◦ Now the top-of-stack symbol is
nonterminal Exp`. We'll consider two
cases:

1. The next token is minus. In this
case, we pop Exp` and push
minus Factor Exp`.

2. The next token is EOF. In this

case, we pop Exp` and push (i.e.,

push nothing).
So with the new grammar, the parser is
able to tell (using only one token look-
ahead) what action to perform.

Unfortunately, there is a major
disadvantage of the new grammar, too.
Consider the parse trees for the string 2
- 3 - 4 for the old and the new

grammars:

Before eliminating Left Recursion:

Exp

Exp minus Factor

Exp minus Factor

Factor

2

3

4

After eliminating Left Recursion:

ε

9 of 23

Exp

minus Exp`

minus

Exp`Factor

2 Factor

3 Factor Exp`

4 epsilon

The original parse tree shows the
underlying structure of the expression; in
particular it groups 2 - 3 in one subtree

to reflect the fact that subtraction is left
associative. The parse tree for the new
grammar is a mess! Its subtrees don't
correspond to the sub-expressions of 2 -
3 - 4 at all! Fortunately, we can design a

predictive parser to create an abstract-
syntax tree that does correctly reflect the
structure of the parsed code even though
the grammar's parse trees do not.

Note that the rule for removing
immediate left recursion given above only
handled a somewhat restricted case,
where there was only one left-recursive
production. Here's a more general rule
for removing immediate left recursion:

◦ For every set of productions of the
form:

◦ Replace them with the following
productions:

Note also that there are rules for removing
non-immediate left recursion; for example,
you can read about how to do that in the
compiler textbook by Aho, Sethi & Ullman,
on page 177. However, we will not discuss
that issue here.

A ⟶ A | A | … | A | | … |α1 α2 αm β1 βn

A ⟶ A‘ | A‘ | … | A‘β1 β2 βn

A‘⟶ A‘| … | A‘|εα1 αm

10 of 23

Left Factoring

A second property that precludes a
grammar from being LL(1) is if it is not left
factored, i.e., if a nonterminal has two
productions whose right-hand sides have a
common prefix. For example, the following
grammar is not left factored:

() | ()

In this example, the common prefix is "(".

This problem is solved by left-factoring, as
follows:

• Given a pair of productions of the form:

 |

where is a sequence of terminals and/or

nonterminals, and and are

sequences of terminals and/or
nonterminals that do not have a common
prefix (and one of the betas could be
epsilon),

• Replace those two production with:

A` |

For example, consider the following

productions: () | ()

Using the rule defined above, they are
replaced by:

(

) |)

Here's the more general algorithm for left
factoring (when there may be more than
two productions with a common prefix):

For each nonterminal :

◦ Find the longest non-empty prefix

that is common to 2 or more production
right-hand sides.

◦ Replace the productions:

 | | | y1 | .. | yn

with:

Exp ⟶ Exp

A ⟶ α β1 α β2

α

β1 beta2

A ⟶ α A‘

⟶ β1 β2

Exp ⟶ Exp

Exp ⟶ Exp‘

Exp‘ ⟶ Exp

A

α

A ⟶α β1 … α βm

11 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftFact
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#leftFact

 A` | | |

A` | |

Repeat this process until no
nonterminal has two productions with a
common prefix.

Note that this transformation (like the
one for removing immediate left
recursion) has the disadvantage of
making the grammar much harder to
understand. However, it is necessary if
you need an LL(1) grammar.

Here's an example that demonstrates
both left-factoring and immediate left-
recursion removal:

◦ The original grammar is:

() | | ()

◦ After removing immediate left-
recursion, the grammar becomes:

() | ()

 |

◦ After left-factoring, this new grammar
becomes:

(

) |)

 |

solution

TEST YOURSELF #2

Using the same grammar: exp -> (exp
) | exp exp | (), do left factoring

first, then remove immediate left
recursion.

FIRST and FOLLOW
Sets

Recall: A predictive parser can only be
built for an LL(1) grammar. A grammar is
not LL(1) if it is:

A ⟶ α y1 … yn

⟶ β1 … βm

Exp ⟶ Exp Exp Exp

Exp ⟶ Exp Exp‘ Exp‘

Exp‘ ⟶ Exp Exp‘ ε

Exp ⟶ Exp‘‘

Exp‘‘ ⟶ Exp Exp‘ Exp‘

Exp‘ ⟶ Exp Exp‘ ε

12 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans2

◦ Left recursive, or
◦ not left factored.
However, grammars that are not left
recursive and are left factored may still
not be LL(1). As mentioned earlier, to see
if a grammar is LL(1), we try building the
parse table for the predictive parser. If
any element in the table contains more
than one grammar rule right-hand side,
then the grammar is not LL(1).

To build the table, we must must compute
FIRST and FOLLOW sets for the
grammar.

FIRST Sets

Ultimately, we want to define FIRST sets
for the right-hand sides of each of the
grammar's productions. To do that, we
define FIRST sets for arbitrary sequences

of terminals and/or nonterminals, or

(since that's what can be on the right-
hand side of a grammar production). The

idea is that for sequence , FIRST() is

the set of terminals that begin the strings

derivable from , and also, if can derive

, then is in FIRST(). Using derivation

notation:

To define FIRST() for arbitrary , we

start by defining FIRST(X), for a single
symbol X (a terminal, a nonterminal, or

):

1. X (e.g., X is a terminal):

FIRST(X) = {X}

2. X : FIRST(X) = { }

3. X (e.g., X is a nonterminal): we

must look at all grammar
productions with X on the left, i.e.,
productions of the form:

X Y1 Y2 Y3 ... Yk

where each Yk is a single terminal or

nonterminal (or there is just one Y,

ε

α α

α α

ε ε α

FIRST(α) = { t | (t ∈ Σ ∧ α tβ) ∨ (t = ε ∧ α ε)}⟹

∗

⟹

∗

α α

ε

∈ Σ

= ε ε

∈ N

⟶

13 of 23

and it is). For each such

production, we perform the following
actions:

◦ Put FIRST(Y1) - { } into FIRST(X).

◦ If is in FIRST(Y1), then put

FIRST(Y2) - {epsilon} into

FIRST(X).
◦ If epsilon is in FIRST(Y2), then put

FIRST(Y3) - { } into FIRST(X).

◦ etc...

◦ If is in FIRST(Yi) for 1 i k (all

production right-hand sides)) then

put into FIRST(X).

4. Repeat the previous step until there
are no changes to any nonterminal's
FIRST set

For example, consider computing FIRST
sets for each of the nonterminals in the
following grammar:

Exp Term Exp`

Exp` minus Term Exp` |

Term Factor Term'

Term' divide Factor Term' |

Factor intlit | (Exp)

Here are the FIRST sets (starting with
nonterminal factor and working up, since
we need to know FIRST(factor) to
compute FIRST(term), and we need to
know FIRST(term) to compute
FIRST(exp)):

FIRST(Factor) = { intliteral, (}
FIRST(Term') = { divide, epsilon}

FIRST(Term) = { intliteral, (}
FIRST(Exp`) = { minus , epsilon}

FIRST(Exp) = { intliteral, (}

Note that FIRST(Term)

includes FIRST(Factor).

Since FIRST(Factor)
does not include epsilon, that's

all that is in FIRST(Term)

Note that FIRST(Exp)

includes FIRST(Term).

Since FIRST(Term)
does not include epsilon, that's

all that is in FIRST(Exp)

ε

ε

ε

ε

ε ≤ ≤

ε

⟶

⟶ ε

⟶

⟶ ε

⟶

14 of 23

Once we have computed FIRST(X) for
each terminal and nonterminal X, we can

compute FIRST() for every production's

right-hand-side . In general, will be of

the form:

X1 X2 ... Xn
where each X is a single terminal or
nonterminal, or there is just one X and it

is . The rules for computing FIRST()

are essentially the same as the rules for
computing the first set of a nonterminal:

1. Put FIRST(X1) - { } into FIRST()

2. If is in FIRST(X1) put FIRST(X2)

into FIRST().

3. etc...

4. If is in the FIRST set for every Xk,

put into FIRST().

For the example grammar above, here are
the FIRST sets for each production right-
hand side:

FIRST(Term Exp')
FIRST(minus Term Exp')
FIRST(epsilon)

FIRST(Factor Term')
FIRST(divide Factor Term')
FIRST(intliteral)
FIRST((Exp))

{ intliteral, (}
{ minus }
{ epsilon }

{ intliteral, (}
{ divide }
{ intliteral }
{ (}

=
=
=

=
=
=
=

Why do we care about the FIRST() sets?

During parsing, suppose that there are
two productions:

Production 1:

Production 2:

Consider the situation when the top-of-
stack symbol is A and the current token is

a. If a FIRST(), choose production 1:

pop, push . If, on the other hand, a

FIRST(), choose production 2 : pop, push

. We haven't yet given the rules for using

FIRST and FOLLOW sets to determine
whether a grammar is LL(1); however,
you might be able to guess based on this

discussion, that if a is in both FIRST()

α

α α

ε α

ε α

ε

α

ε

ε α

α

A ⟶α

A ⟶β

∈ α

α ∈

β

β

α

15 of 23

and FIRST(), the grammar is not LL(1).

FOLLOW Sets

FOLLOW sets are only defined for single
nonterminals. The definition is as follows:

For a nonterminal , FOLLOW() is the

set of terminals that can appear
immediately to the right of A in some
partial derivation; i.e., terminal t is in

FOLLOW(A) if where t is a

terminal. If can be the rightmost

symbol in a derivation, then EOF is in

FOLLOW().

It is worth noting that is never in a

FOLLOW set.

Using notation:

Here are some pictures illustrating the
conditions under which symbols a, c, and
EOF are in the FOLLOW set of
nonterminal A:

Figure 1

S

A

..
.

...... ...

...

a b c

a is in

FOLLOW(A)

Figure 2

β

A A

S … A t …⟹

+

A

A

ε

FOLLOW(A) = { t | (t ∈ Σ ∧ S α A t β) ∨ (t = EOF ∧ S αA)}⟹

+

⟹

∗

16 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#follow
https://pages.cs.wisc.edu/~hasti/cs536/readings/Topdown.html#follow

ε

S

X... ...

c d e

c is in

FOLLOW(A)

Y

A B

Figure 3

S

...

...

EOF is in

FOLLOW(A)

A...

How to compute FOLLOW(A) for each
nonterminal A:
◦ If A is the start nonterminal, put EOF in

FOLLOW(A) (like S in Fig. 3).
◦ Now find the productions with A on the

right-hand-side:

◦ For each production ,

put FIRST() - { } in FOLLOW() --

see Fig. 1.

◦ If epsilon is in FIRST() then put

FOLLOW() into FOLLOW(A) -- see

Fig. 2.

◦ For each production , put

FOLLOW(X) into FOLLOW(A) -- see
Figs. 3 and 4.

◦ Repeat the previous step until there are
no changes to any nonterminal's
FOLLOW set

Figure 4

X ⟶ α A β

β ε A

β

X

X ⟶ α A

17 of 23

S

...
X

...

AÎ±

...

whatever follows X

will also follow A

It is worth noting that:

◦ To compute FIRST(A) you must look for
A on a production's left-hand side.

◦ To compute FOLLOW(A) you must look
for A on a production's right-hand
side.

◦ FIRST and FOLLOW sets are always

sets of terminals (plus, perhaps, for

FIRST sets, and EOF for follow sets).
Nonterminals are never in a FIRST or a

FOLLOW set; is never in a FOLLOW

set.

Here's an example of FOLLOW sets (and
the FIRST sets we need to compute
them). In this example, nonterminals are
upper-case letters, and terminals are
lower-case letters.

c |

a b | c

d |

FIRST() FOLLOW()

{d, } {a, c}

{a, c} {c, EOF}

{a, c, d} {EOF, c}

Note that

FOLLOW()

always
includes
EOF

Now let's consider why we care about
FOLLOW sets:

ε

ε

S ⟶ B D B

B ⟶ S

D ⟶ ε

α α α

D ε

B

S
S

18 of 23

◦ Suppose, during parsing, we have some

 at the top-of-stack, and a is the

current token.

◦ We need to replace on the stack with

the right-hand side of a production

. What if has an additional

production . Which one should

we use?
◦ We've already said that if a is in

FIRST(), but not in FIRST(), then we

want to choose .

◦ But what if a is not in FIRST() or

FIRST()? If or can derive , and a

is in FOLLOW(), then we still have

hope that the input will be accepted: If

 can derive (i.e., FIRST(), then

we want to choose (and similarly

if can derive). The idea is that since

 can derive , it will eventually be

popped from the stack, and if we're
lucky, the next symbol down (the one

that was under the) will be a.

TEST YOURSELF #3

Here are five grammar productions for
(simplified) method headers:

1. methodHeader -> VOID ID LPAREN paramList RPAREN

2. paramList -> epsilon
3. paramList -> nonEmptyParamList

4. nonEmptyParamList -> ID ID
5. nonEmptyParamList -> ID ID COMMA nonEmptyParamList

Question 1: Compute the FIRST and
FOLLOW sets for the three nonterminals,
and the FIRST sets for each production
right-hand side.

Question 2: Draw a picture to illustrate
what the predictive parser will do, given
the input sequence of tokens: "VOID ID
LPAREN RPAREN EOF". Include an
explanation of how the FIRST and
FOLLOW sets are used when there is a
nonterminal on the top-of-stack that has
more than one production.

X

X

X ⟶ α X

X ⟶ β

α β

X ⟶ α

α

β α β ε

X

α ε ε ∈ α

X ⟶ α

β ε

α ε

X

19 of 23

solution

How to Build Parse
Tables

Recall that the form of the parse table is:

a b c

column: current token

row: nonterminal at

top of stack

cell: production

right-hand-side to push

X

Y

Z

Table entry[,a] is either empty (if having

 on top of stack and having a as the

current token means a syntax error) or
contains the right-hand side of a
production whose left-hand-side

nonterminal is -- that right-hand side is

what should be pushed.

To build the table, we fill in the rows one

at a time for each nonterminal as

follows:

for each production :

for each terminal t in FIRST():

put in Table[,t]

if FIRST() then:

for each terminal t in FOLLOW():

put in Table[,t]

The grammar is not LL(1) iff there is
more than one entry for any cell in the

X

X

X

X

X ⟶ α

α

α X

ϵ ∈ α

X

α X

20 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans3

table.

Let's try building a parse table for the
following grammar:

c |

a b | c

d |

First we calculate the FIRST and
FOLLOW sets:

FIRST() FOLLOW()

{d, } {a, c}

{a, c} {c, EOF}

{a, c, d} {EOF, c}

c {a, c} -

{d, a, c} -

a b {a} -

c {c} -

d {d} -

{ } -

Then we use those sets to start filling in
the parse table:

a b c

S

B

D

d EOF

B c

D B

B c

D B

D B

epsilon epsilon

Not all entries have been filled in, but
already we can see that this grammar is not
LL(1) since there are two entries in
table[S,a] and in table[S,c].

Here's how we filled in this much of the
table:

1. First, we considered the production S
-> B c. FIRST(Bc) = { a, c }, so we

put the production's right-hand side (B
c) in Table[S, a] and in Table[S, c].

S ⟶ B D B

B ⟶ S

D ⟶ ε

α α α

D ε

B

S

B

D B

S

ε ε

21 of 23

FIRST(Bc) does not include epsilon, so

we're done with that production.
2. Next, we considered the production S

-> D B . FIRST(DB) = { d, a, c }, so we

put the production's right-hand side (D
B) in Table[S, d], Table[S, a], and

Table[S, c].
3. Next, we considered the production D

-> epsilon. FIRST(epsilon) = {

epsilon }, so we must look at
FOLLOW(D). FOLLOW(D) = { a, c },
so we put the production's right-hand
side (epsilon) in Table[D, a] and
Table[D, c}.

TEST YOURSELF #4

Finish filling in the parse table given above.

solution

How to Code a
Predictive Parser

Now, suppose we actually want to code a
predictive parser for a grammar that is
LL(1). The simplest idea is to use a table-
driven parser with an explicit stack. Here's
pseudo-code for a table-driven predictive
parser:

 Stack.push(EOF);
 Stack.push(start-nonterminal);
 currToken = scan();

 while (! Stack.empty()) {
 topOfStack = Stack.pop();
 if (isNonTerm(topOfStack)) {
 // top of stack symbol is a nonterminal
 p = table[topOfStack, currToken];
 if (p is empty) report syntax error and quit
 else {
 // p is a production's right-hand side

 push p, one symbol at a time, from right to left
 }
 }
 else {
 // top of stack symbol is a terminal
 if (topOfStack == currToken) currToken = scan();
 else report syntax error and quit
 }
 }

22 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans4
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans4

TEST YOURSELF #5

Here is a CFG (with rule numbers):

S -> epsilon (1)
 | X Y Z (2)

X -> epsilon (3)
 | X S (4)

Y -> epsilon (5)
 | a Y b (6)

Z -> c Z (7)
 | d (8)

Question 1(a): Compute the First and
Follow Sets for each nonterminal.

Question 1(b): Draw the Parse Table.

solution

23 of 23

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans5
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARSING-ANSWERS.html#ans5

Contents

• Example: Counting Parentheses
• Test Yourself #1
• Handling Non-LL(1) Grammars
• Test Yourself #2
• Summary

Now we consider how to implement a
syntax-directed translation using a
predictive parser. It is not obvious how to
do this, since the predictive parser works
by building the parse tree top-down, while
the syntax-directed translation needs to be
computed bottom-up. Of course, we could
design the parser to actually build the
parse tree (top-down), then use the
translation rules to build the translation
(bottom-up). However, that would not be
very efficient.

Instead, we avoid explicitly building the
parse tree by giving the parser a second
stack called the semantic stack:

• The semantic stack holds nonterminals'
translations; when the parse is finished, it
will hold just one value: the translation of
the root nonterminal (which is the
translation of the whole input).

• Values are pushed onto the semantic
stack (and popped off) by adding actions
to the grammar rules. The action for one
rule must:
◦ Pop the translations of all right-hand-

side nonterminals.
◦ Compute and push the translation of

the left-hand-side nonterminal.
• The actions themselves are represented

by action numbers, which become part
of the right-hand sides of the grammar
rules. They are pushed onto the (normal)
stack along with the terminal and
nonterminal symbols. When an action
number is the top-of-stack symbol, it is
popped and the action is carried out.

So what actually happens is that the action

1 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#ex3
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#ex3
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#nonLL1
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#nonLL1
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#summ
https://pages.cs.wisc.edu/~hasti/cs536/readings/parsingSDT.html#summ

for a grammar rule is

pushed onto the (normal) stack when the

derivation step is made, but

the action is not actually performed until

complete derivations for all of the s have

been carried out.

Example: Counting
Parentheses

For example, consider the following syntax-
directed translation for the language of
balanced parentheses and square brackets.
The translation of a string in the language
is the number of parenthesis pairs in the
string.

CFG
Transition
Rules

.trans = 0

|

(

)

.trans =

.trans + 1

|

[

]

.trans =

.trans

The first step is to replace the transition
rules with translation actions. Each
action must:

• Pop all right-hand-side nonterminals'
translations from the semantic stack.

• Compute and push the left-hand-side
nonterminal's translation.

Here are the transition actions:

CFG
Transition
Actions

push 0;

|

(

)

exp2trans =

pop() ;
push(exp2trans +

X ⟶ …Y1 Y2 Yn

X ⟶ …Y1Y2 Yn

Y

Exp ⟶ ε Exp

Exp
Exp1

Exp2

Exp
Exp1

Exp2

Exp ⟶ ε

Exp

2 of 8

1)

|

[

]

exp2trans =

pop() ;
push(exp2trans)

Next, each action is represented by a
unique action number, and those action
numbers become part of the grammar
rules:

CFG with Embedded Actions

 #1

| () #2

| [] #3

where

#1
is

push 0;

#2
is

exp2trans = pop() ;

push(exp2trans + 1)

#3 is
exp2trans = pop() ;

push(exp2trans)

Note that since action #3 just pushes
exactly what is popped, that action is
redundant, and it is not necessary to have
any action associated with the third
grammar rule. Here's a picture that
illustrates what happens when the input
"([])" is parsed (assuming that we have
removed action #3):

Input
so
far

 Stack
Semantic
Stack

 Action

(
EOF

pop,
push (
exp)
#2

(

(

) #2

EOF

pop,
scan

Exp

Exp ⟶ ε

Exp

Exp

Exp

Exp

3 of 8

([

)

#2

EOF

pop,
push "[
exp]"

([

[

]) #2

EOF

pop,
scan

([]

]

) #2

EOF

pop,

push

#1

([]

#1])
#2

EOF

pop,
do
action
#1

([]
]) #2

EOF
0

pop,
scan

([]
) #2

EOF
0

pop,
scan

([])

EOF

#2

EOF
0

pop,
do
action
#2

([])

EOF
EOF 1

pop,
scan

([])

EOF

empty
stack,
accept

translation of input = 1

In the example above, there is no grammar
rule with more than one nonterminal on the
right-hand side. If there were, the
translation action for that rule would have
to do one pop for each right-hand-side
nonterminal. For example, suppose we are
using a grammar that includes the rule:

 { }

and that the syntax-directed translation is
counting the number of declarations and
statements in each method body (so the

translation of is the number of

derived declarations, the translation of

 is the number of derived statements,

and the translation of is the

number of derived declarations and

Exp

Exp

Exp

ε

MethodBody ⟶ VarDecls Stmts

VarDecls

Stmts

MethodBody

4 of 8

statements).

CFG Rule: methodBody -> { varDecls stmts }
Translation Rule: methodBody.trans = varDecls.trans + stmts.trans
Translation Action: stmtsTrans = pop(); declsTrans = pop();

 push(stmtsTrans + declsTrans);
CFG rule with Action: methodBody -> { varDecls stmts } #1
 #1: stmtsTrans = pop();

 declsTrans = pop();
 push(stmtsTrans + declsTrans);

Note that the right-hand-side nonterminals'
translations are popped from the semantic
stack right-to-left. That is because the
predictive parser does a leftmost
derivation, so the varDecls nonterminal

gets "expanded" first; i.e., its parse tree is
created before the parse tree for the stmts

nonterminal. This means that the actions
that create the translation of the varDecls

nonterminal are performed first, and thus
its translation is pushed onto the semantic
stack first.

Another issue that has not been illustrated
yet arises when a left-hand-side
nonterminal's translation depends on the
value of a right-hand-side terminal. In that
case, it is important to put the action
number before that terminal symbol when
incorporating actions into grammar rules.
This is because a terminal symbol's value is
available during the parse only when it is
the "current token". For example, if the
translation of an arithmetic expression is
the value of the expression:

CFG Rule: factor -> INTLITERAL
Translation Rule: factor.trans = INTLITERAL.value
Translation Action: push(INTLITERAL.value)
CFG rule with Action: factor -> #1 INTLITERAL // action BEFORE terminal
 #1: push(currToken.value)

TEST YOURSELF #1

For the following grammar, give (a)
translation rules, (b) translation actions
with numbers, and (c) a CFG with action
numbers, so that the translation of an input
expression is the value of the expression.
Do not worry about the fact that the

5 of 8

grammar is not LL(1).

exp -> exp + term
 -> exp - term
 -> term
term -> term * factor
 -> term / factor
 -> factor
factor -> INTLITERAL
 -> (exp)

solution

Handling Non-LL(1)
Grammars

Recall that a non-LL(1) grammar must be
transformed to an equivalent LL(1)
grammar if it is to be parsed using a
predictive parser. Recall also that the
transformed grammar usually does not
reflect the underlying structure the way the
original grammar did. For example, when
left recursion is removed from the grammar
for arithmetic expressions, we get grammar
rules like this:

CFG

| +

It is not at all clear how to define a syntax-
directed translation for rules like these. The
solution is to define the syntax-directed
translation using the original grammar
(define translation rules, convert them to
actions that push and pop using the
semantic stack, and then incorporate the
action numbers into the grammar rules).
Then convert the grammar to be LL(1),
treating the action numbers just like
terminal grammar symbols!

For example:

Non-LL(1) Grammar Rules With
Actions

Exp ⟶ Term Exp‘

Exp‘ ⟶ ε

Term Exp‘

6 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/LL-TRANS-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/LL-TRANS-ANSWERS.html#ans1

 + #1

|

 * #2

|

#1
is

TTrans = pop() ; ETrans =

pop() ; push(ETrans +

TTrans);

#2
is

FTrans = pop() ; TTrans =

pop() ; push(TTrans * FTrans);

After Removing Immediate Left
Recursion

+ #1

|

* #2

|

TEST YOURSELF #2

Transform the grammar rules with actions
that you wrote for the "Test Yourself #1"
exercise to LL(1) form. Trace the actions of
the predictive parser on the input 2 + 3 *

4.

solution

Summary

A syntax-directed translation is used to
define the translation of a sequence of
tokens to some other value, based on a CFG
for the input. A syntax-directed translation
is defined by associating a translation rule
with each grammar rule. A translation rule
defines the translation of the left-hand-side
nonterminal as a function of the right-hand-
side nonterminals' translations, and the
values of the right-hand-side terminals. To

Exp ⟶ Exp Term

Term

Term ⟶ Term Factor

Factor

Exp ⟶ Term Exp‘

Exp‘ ⟶ Term Exp‘

ε

Term ⟶ Factor Term‘

Term‘ ⟶ Factor Term‘

ε

7 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/LL-TRANS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/LL-TRANS-ANSWERS.html#ans2

compute the translation of a string, build
the parse tree, and use the translation rules
to compute the translation of each
nonterminal in the tree, bottom-up; the
translation of the string is the translation of
the root nonterminal.

There is no restriction on the type of a
translation; it can be a simple type like an
integer, or a complex type list an abstract-
syntax tree.

To implement a syntax-directed translation
using a predictive parser, the translation
rules are converted to actions that
manipulate the parser's semantic stack.
Each action must pop all right-hand-side
nonterminals' translations from the
semantic stack, then compute and push the
left-hand-side nonterminal's translation.
Next, the actions are incorporated (as
action numbers) into the grammar rules.
Finally, the grammar is converted to LL(1)
form (treating the action numbers just like
terminal or nonterminal symbols).

8 of 8

Contents

• Introduction
• Symbol Tables
◦ Scoping
◦ Test Yourself #1
◦ Test Yourself #2
◦ Symbol Table Implementations
◦ Method 1: List of Hashtables
◦ Test Yourself #3

◦ Method 2: Hashtable of Lists
◦ Test Yourself #4

• Type Checking
◦ Test Yourself #5

Introduction

The parser ensures that the input program
is syntactically correct, but there are other
kinds of correctness that it cannot (or
usually does not) enforce. For example:

• A variable should not be declared more
than once in the same scope.

• A variable should not be used before
being declared.

• The type of the left-hand side of an
assignment should match the type of the
right-hand side.

• Methods should be called with the right
number and types of arguments.

The next phase of the compiler after the
parser, sometimes called the static
semantic analyzer is in charge of
checking for these kinds of errors. The
checks can be done in two phases, each of
which involves traversing the abstract-
syntax tree created by the parser:

1. For each scope in the program:
Process the declarations, adding new
entries to the symbol table and
reporting any variables that are
multiply declared; process the
statements, finding uses of undeclared
variables, and updating the "ID" nodes

1 of 15

https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#symTab
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#symTab
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#scope
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#scope
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#imp
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#imp
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#list
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#list
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#symtabOfLists
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#symtabOfLists
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#typeCheck
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#typeCheck
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry5
https://pages.cs.wisc.edu/~hasti/cs536/readings/symtab.html#youtry5

of the abstract-syntax tree to point to
the appropriate symbol-table entry.

2. Process all of the statements in the
program again, using the symbol-table
information to determine the type of
each expression, and finding type
errors.

Below, we will consider how to build symbol
tables and how to use them to find multiply-
declared and undeclared variables. We will
then consider type checking.

Symbol Tables

The purpose of the symbol table is to keep
track of names declared in the program.
This includes names of classes, fields,
methods, and variables. Each symbol table
entry associates a set of attributes with one
name; for example:

• which kind of name it is
• what is its type
• what is its nesting level
• where will it be found at runtime.

One factor that will influence the design of
the symbol table is what scoping rules are
defined for the language being compiled.
Let's consider some different kinds of
scoping rules before continuing our
discussion of symbol tables.

Scoping

A language's scoping rules tell you when
you're allowed to reuse a name, and how to
match uses of a name to the corresponding
declaration. In most languages, the same
name can be declared multiple times under
certain circumstances. In Java you can use
the same name in more than one
declaration if the declarations involve
different kinds of names. For example, you
can use the same name for a class, a field of
the class, a method of the class, and a local
variable of the method (this is not
recommended, but it is legal):

2 of 15

class Test {
 int Test;

 void Test() {
 double Test; // could also be declared int
 }
}

In Java (and C++), you can also use the
same name for more than one method as
long as the number and/or types of
parameters are unique (this is called
overloading).

In C and C++, but not in Java, you can
declare variables with the same name in
different blocks. A block is a piece of code
inside curly braces; for example, in an if or
a loop. The following is a legal C or C++
function, but not a legal Java method:

void f(int k) {
 int x = 0; /* x is declared here */

 while (...) {
 int x = 1; /* another x is declared here */
 ...
 if (...) {
 float x = 5.5; /* and yet another x is declared here! */
 ...
 }
 }
}

As mentioned above, the scopinge rules of a
language determine which declaration of a
named object corresponds to each use. C,
C++, and Java use what is called static
scoping; that means that the
correspondence between uses and
declarations is made at compile time. C and
C++ use the "most closely nested" rule to
match nested declarations to their uses: a
use of variable x matches the declaration in
the most closely enclosing scope such that
the declaration precedes the use. In C and
C++, there is one, outermost scope that
includes the names of the global variables
(the variables that are declared outside the
functions) and the names of the functions
that are not part of any class. Each function
has one or more scopes. Both C and C++
have one scope for the parameters and the
"top-level" declarations, plus one for each

3 of 15

block in the function (delimited by curly
braces). In addition, C++ has a scope for
each for loop: in C++ (but not in C) you can
declare variables in the for-loop header.

In the example given above, the outermost
scope includes just the name "f", and
function f itself has three scopes:

1. The outer scope for f includes
parameter k, and the variable x that is
initialized to 0.

2. The next scope is for the body of the
while loop, and includes the variable x
that is initialized to 1.

3. The innermost scope is for the body of
the if, and includes the variable x that
is initialized to 5.5.

So a use of variable x inside the loop but
not inside the if matches the declaration in
the loop (has the value 1), while a use of x
outside the loop (either before or after the
loop) matches the declaration at the
beginning of the function (has the value 0).

TEST YOURSELF #1

Question 1: Consider the names declared
in the following code. For each, determine
whether it is legal according to the rules
used in Java.

class animal {
 // methods
 void attack(int animal) {
 for (int animal=0; animal<10; animal++) {
 int attack;
 }
 }

 int attack(int x) {
 for (int attack=0; attack<10; attack++) {
 int animal;
 }
 }

 void animal() { }

 // fields
 double attack;
 int attack;
 int animal;
}

4 of 15

Question 2: Consider the following C++
code. For each use of a name, determine
which declaration it corresponds to (or
whether it is a use of an undeclared name).

int k=10, x=20;

void foo(int k) {
 int a = x;
 int x = k;
 int b = x;
 while (...) {
 int x;

if (x == k) {
 int k, y;
 k = y = x;
}
if (x == k) {
 int x = y;
}

 }
}

solution

Not all languages use static scoping. Lisp,
APL, and Snobol use what is called
dynamic scoping. A use of a variable that
has no corresponding declaration in the
same function corresponds to the
declaration in the most-recently-called
still active function. For example, consider
the following code:

void main() {
 f1();
 f2();
}

void f1() {
 int x = 10;
 g();
}

void f2() {
 String x = "hello";
 f3();
 g();
}

void f3() {
 double x = 30.5;
}

void g() {
 print(x);
}

Under dynamic scoping this program

5 of 15

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans1

outputs "10 hello". The first call to g comes
from f1, whose copy of x has value 10. The
next call to g comes from f2. Although f3 is
called by f2 before it calls g, the call to f3 is
not active when g is called; therefore, the
use of x in g matches the declaration in f2,
and "hello" is printed.

TEST YOURSELF #2

Assuming that dynamic scoping is used,
what is output by the following program?

void main() {
 int x = 0;
 f1();
 g();
 f2();
}

void f1() {
 int x = 10;
 g();
}

void f2() {
 int x = 20;
 f1();
 g();
}

void g() {
 print(x);
}

solution

It is generally agreed that dynamic scoping
is a bad idea; it can make a program very
difficult to understand, because a single use
of a variable can correspond to many
different declarations (with different types)!
The languages that use dynamic scoping
are all old languages; recently designed
languages all use static scoping.

Another issue that is handled differently by
different languages is whether names can
be used before they are defined. For
example, in Java, a method or field name
can be used before the definition appears,
but this is not true for a variable:

class Test {
 void f() {

6 of 15

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans2

 val = 0; // field val has not yet been declared -- OK
 g(); // method g has not yet been declared -- OK
 x = 1; // variable x has not yet been declared -- ERROR!
 int x;
 }

 void g() {}
 int val;
}

In what follows, we will assume that we are
dealing with a language that:

• uses static scoping
• requires that all names be declared

before they are used
• does not allow multiple declarations of a

name in the same scope (even for
different kinds of names)

• does allow the same name to be declared
in multiple nested scopes (but only once
per scope)

• uses the same scope for a method's
parameters and for the local variables
declared at the beginning of the method

Symbol Table
Implementations

In addition to the assumptions listed at the
end of the previous section, we will assume
that:

• The symbol table will be used to answer
two questions:

1. Given a declaration of a name, is
there already a declaration of the
same name in the current scope (i.e.,
is it multiply declared)?

2. Given a use of a name, to which
declaration does it correspond (using
the "most closely nested" rule), or is
it undeclared?

• The symbol table is only needed to
answer those two questions (i.e., once all
declarations have been processed to build
the symbol table, and all uses have been
processed to link each ID node in the
abstract-syntax tree with the
corresponding symbol-table entry, the
symbol table itself is no longer needed).

7 of 15

Given these assumptions, the symbol-table
operations we will need are:

1. Look up a name in the current scope
only (to check if it is multiply
declared).

2. Look up a name in the current and
enclosing scopes (to check for a use of
an undeclared name, and to link a use
with the corresponding symbol-table
entry).

3. Insert a new name into the symbol
table with its attributes.

4. Do what must be done when a new
scope is entered.

5. Do what must be done when a scope is
exited.

We will look at two ways to design a symbol
table: a list of hashtables, and a hashtable
of lists. For each approach, we will consider
what must be done when entering and
exiting a scope, when processing a
declaration, and when processing a use. To
keep things simple, we will assume that
each symbol-table entry includes only:

• the symbol name
• its type
• the nesting level of its declaration

Method 1: List of Hashtables

The idea behind this approach is that the
symbol table consists of a list of hashtables,
one for each currently visible scope. When
processing a scope S, the structure of the
symbol table is:

front of list end of list

Declarations

made in S

Declarations made in scopes that
enclose S. Each hashtable in the
list corresponds to one scope
(i.e. contains all declarations for
that scope)

For example, given this code:

8 of 15

void f(int a, int b) {
 double x;
 while (...) {
 int x, y;
 ...
 }

void g() {
 f();
}

After processing the declarations inside the
while loop, the symbol table looks like this:

Declarations
in the loop Declarations in f

x: int, 3

y: int, 3

a: int, 2

b: int, 2

x: double, 2

f: (int,int) -> void, 1

Global Declarations

The declaration of method g has not yet
been processed, so it has no symbol-table
entry yet. Note that because f is a method,
its type includes the types of its parameters
(int, int), and its return type (void).

Here are the operations that need to be
performed on scope entry/exit, and to
process a declaration/use:

1. On scope entry: increment the current
level number and add a new empty
hashtable to the front of the list.

2. To process a declaration of x: look up x
in the first table in the list. If it is
there, then issue a "multiply declared
variable" error; otherwise, add x to the
first table in the list.

3. To process a use of x: look up x
starting in the first table in the list; if it
is not there, then look up x in each
successive table in the list. If it is not
in any table then issue an "undeclared
variable" error.

4. On scope exit, remove the first table
from the list and decrement the
current level number.

Remember that method names need to go
into the hashtable for the outermost scope
(not into the same table as the method's
variables). For example, in the picture
above, method name f is in the symbol table

9 of 15

for the outermost scope; name f is not in
the same scope as parameters a and b, and
variable x. This is so that when the use of
name f in method g is processed, the name
is found in an enclosing scope's table.

There are several factors involved in the
time required for each operation:

1. Scope entry: time to initialize a new,
empty hashtable; this is probably
proportional to the size of the
hashtable.

2. Process a declaration: using
hashing, constant expected time
(O(1)).

3. Process a use: using hashing to do
the lookup in each table in the list, the
worst-case time is O(depth of nesting),
when every table in the list must be
examined.

4. Scope exit: time to remove a table
from the list, which should be O(1) if
garbage collection is ignored.

TEST YOURSELF #3

For all three questions below, assume that
the symbol table is implemented using a list
of hashtables.

Question 1: Recall that Java does not allow
the same name to be used for a local
variable of a method, and for another local
variable declared inside a nested scope in
the method body. Even with this restriction,
it is not a good idea to put all of a method's
local variables (whether they are declared
at the beginning of the method, or in some
nested scope within the method body) in
the same table. Why not?

Question 2: C++ does not use exactly the
scoping rules that we have been assuming.
In particular, C++ does allow a function to
have both a parameter and a local variable
with the same name (and any uses of the
name refer to the local variable).

10 of 15

Consider the following code. Draw the
symbol table as it would be after processing
the declarations in the body of f under:

• the scoping rules we have been assuming
• C++ scoping rules

void g(int x, int a) { }

void f(int x, int y, int z) {
 int a, b, x;
 ...
}

Question 3: Assume that a symbol-table
entry includes the "kind" of the declared
name as well as the other attributes
assumed above (if the same name is
declared as two different "kinds" in one
scope, there would be one entry with a list
of "kinds"). Also assume that we can tell
(from context), for each use of a name,
what "kind" of name it is supposed to be.

Which of the four operations (scope entry,
process a declaration, process a use, scope
exit) described above would change (and
how would it change) if Java rules for name
reuse were used instead of C++ rules (i.e.,
if the same name can be used within one
scope as long as the uses are for different
kinds of names, and if the same name
cannot be used for more than one variable
declaration in nested scopes)?

solution

Method 2: Hashtable of Lists

The idea behind this approach is that when
processing a scope S, the structure of the
symbol table is:

x:

y:

z:

11 of 15

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans3

There is just one big hashtable, containing
an entry for each variable for which there is
some declaration in scope S or in a scope
that encloses S. Associated with each
variable is a list of symbol-table entries.
The first list item corresponds to the most
closely enclosing declaration; the other list
items correspond to declarations in
enclosing scopes.

For example, given this code:

void f(int a) {
 double x;
 while (...) {
 int x, y;
 ...
 }

void g() {
 f();
}

After processing the declarations inside the
while loop, the symbol table looks like this:

f:

a:

x:

int â†’ void, 1

int, 2

double, 2int, 3

y: int, 3

Note that the level-number attribute stored
in each list item enables us to determine
whether the most closely enclosing
declaration was made in the current scope
or in an enclosing scope.

Here are the operations that need to be
performed on scope entry/exit, and to
process a declaration/use:

1. On scope entry: increment the current
level number.

2. To process a declaration of x: look up x
in the symbol table. If x is there, fetch
the level number from the first list
item. If that level number = the
current level then issue a "multiply
declared variable" error; otherwise,

12 of 15

add a new item to the front of the list
with the appropriate type and the
current level number.

3. To process a use of x: look up x in the
symbol table. If it is not there, then
issue an "undeclared variable" error.

4. On scope exit, scan all entries in the
symbol table, looking at the first item
on each list. If that item's level number
= the current level number, then
remove it from its list (and if the list
becomes empty, remove the entire
symbol-table entry). Finally, decrement
the current level number.

The required times for each operation are:

1. Scope entry: time to increment the
level number, O(1).

2. Process a declaration: using
hashing, constant expected time
(O(1)).

3. Process a use: using hashing,
constant expected time (O(1)).

4. Scope exit: time proportional to the
number of names in the symbol table
(or perhaps even the size of the
hashtable if no auxiliary information is
maintained to allow iteration through
the non-empty hashtable buckets).

TEST YOURSELF #4

Assume that the symbol table is
implemented using a hashtable of lists.
Draw pictures to show how the symbol
table changes as the declarations in each
scope in the following code is processed.

void g(int x, int a) {
 double d;
 while (...) {
 int d, w;
 double x, b;
 if (...) {
 int a,b,c;
 }
 }
 while (...) {
 int x,y,z;
 }
}

13 of 15

solution

Type Checking

As mentioned in the Introduction, the job of
the type-checking phase is to:

• Determine the type of each expression in
the program (each node in the AST that
corresponds to an expression).

• Find type errors.

The type rules of a language define how to
determine expression types, and what is
considered to be an error. The type rules
specify, for every operator (including
assignment), what types the operands can
have, and what is the type of the result. For
example, both C++ and Java allow the
addition of an int and a double, and the
result is of type double. However, while
C++ also allows a value of type double to
be assigned to a variable of type int, Java
considers that an error.

TEST YOURSELF #5

List as many of the operators that can be
used in a Java program as you can think of
(don't forget to think about the logical and
relational operators as well as the
arithmetic ones). For each operator, say
what types the operands may have, and
what is the type of the result.

In addition to finding type errors caused by
operators being applied to operands of the
wrong type, the type checker must also find
type errors having to do with expressions
that, because of their context must be
boolean, and type errors having to do with
method calls. Examples of the first kind of
error include:

• the condition of an if statement
• the condition of a while loop
• the termination condition part of a for

loop

14 of 15

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans4
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/SYMTAB-ANSWERS.html#ans4

and examples of the second kind of error
include:

• calling something that is not a method
• calling a method with the wrong number

of arguments
• calling a method with arguments of the

wrong types

15 of 15

Contents

• Introduction
• Storage Layout
• Static Allocation
◦ Test Yourself #1

• Stack Allocation
◦ Example
◦ Test Yourself #2

Introduction

In this set of notes we will consider:

• How storage is laid out at runtime.
• What information is stored for each

method.
• What happens during method call and

return for two different approaches to
storage layout: static and stack
allocation.

Storage Layout

There are many possible ways to organize
memory. We will concentrate mainly on the
standard Unix approach, illustrated below:

Code

Static Data

(e.g. constants)

Heap

(grows towards high memory)

Stack

(grows towards low memory)

Low address

High address

Free (unallocated) memory

Usually, the stack is used to store one

1 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#storageLayout
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#storageLayout
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#staticAlloc
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#staticAlloc
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#stackAlloc
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#stackAlloc
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#ex1
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/runtime.html#youtry2

activation record for each currently active
method, and the heap is used for
dynamically allocated memory (i.e., memory
allocated as a result of using the new
operator). An activation record is a data
structure used to hold information relevant
to one method call. The exact structure of
an activation record depends both on the
language in use and on the particular
implementation; a typical organization is
shown in the following picture (the
individual fields will be discussed in some
detail below and in the next set of notes).

Parameters

Access link

Return value

(for non-void methods)

Saved registers

Control link

Return address

Local variables

High address

Low address

As mentioned above, activation records are
usually stored on the stack. A new record is
pushed onto the stack when a method is
called, and is popped when the method
returns. However, for some languages,
activation records may be stored in the
heap (this might be done, for example, in a
concurrent language, in which method calls
do not obey the last-in-first-out protocol of a
stack) or in the static data area. We will
briefly consider the latter approach, then
look at the most common case of stack
allocation. In both cases, we will consider
what must be done when a method is
called, when it starts executing, and when

2 of 8

it returns.

Static Allocation

Some old implementations of Fortran used
this approach: there is no heap or stack,
and all allocation records are in the static
data area, one per method. This means that
every time a method is called, its
parameters and local variables are stored in
the same locations (which are known at
compile time). This approach has some
advantages and disadvantages when
compared with stack or heap allocation of
activation records:

ADVANTAGES

• + fast access to all names (e.g., no need
to compute the address of a variable at
runtime)

• + no overhead of stack/heap
manipulation

DISADVANTAGES

• - no recursion
• - no dynamic allocation

Using this approach, when a method is
called, the calling method:

• Copies each argument into the
corresponding parameter's space in the
called method's activation record (AR).

• May save some registers (in its own AR).
• Performs a "Jump & Link": Jump to the
first instruction of the called method, and
put the address of the next instruction
after the call (the return address) into the
special RA register (the "return address"
register).

The called method:

• Copies the return address from RA into
its AR's return-address field.

• May save some registers (in its AR).
• May initialize local data.

3 of 8

When the called method is ready to return,
it:

• Restores the values of any registers that
it saved.

• Jumps to the address that it saved in its
AR's return-address field.

Back in the calling method, the code that
follows that call does the following:

• Restores any registers that it saved.
• If the called method was non-void

(returned a value), put the return value
(which may be in a special register or in
the AR of the called method) in the
appropriate place. For example, if the
code was x = f();, then the return value

should be copied into variable x.

TEST YOURSELF #1

Assume that static allocation is used, and
that each activation record contains local
variables, parameters, the return address,
and (for non-void methods) the return
value. Trace the execution of the following
code by filling in the appropriate fields of
the activation records of the three methods.
Also think about where the string literals
would be stored.

1. void error(String name, String msg) {
2. System.out.println("ERROR in method " + name + ": " + msg);
3. }
4.
5. int summation(int max) {
6. int sum = 1;
7. for (int k=1; k<=max; k++) {
8. sum += k;
9. }
10. return sum;
11. }
12.
13. void main() {
14. int x = summation(3);
15. if (x != 6) error("main", "bad value returned by summation");
16. }

solution

4 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ENVIRONMENTS-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ENVIRONMENTS-ANSWERS.html#ans1

Stack Allocation

Stack allocation is used to implement most
modern programming languages. The basic
idea is that:

• Each time a method is called, a new AR
(also called a stack frame) is pushed
onto the stack.

• The AR is popped when the method
returns.

• A register (SP for "stack pointer") points
to the top of the stack.

• Another register (FP for "frame pointer")
points to a fixed item (such as the return
address or the access link) in the current
method's AR.

When a method is called, the calling
method:

• May save some registers (in its own AR).
• Pushes the parameters onto the stack

(into space that is shared with the called
method's AR).

• If the language allows nested methods,
may set up the access link; this means
pushing the appropriate value -- more on
that in the next set of notes -- onto the
stack.

• Does a "Jump & Link" -- jumps to the 1st
instruction of the called method, and puts
the address of the next instruction (the
one after the call) into register RA.

The called method:

• Pushes the return address (from RA) onto
the stack (into its AR's "return address"
field).

• Pushes the old FP into its AR's "control
link" field.

• Sets the FP to point to the appropriate
place in its AR (to the "access link" field if
there is one; otherwise, to the "return-
address" field). The address of that field
is computed as follows: SP + (size of
"control link" field) + (size of "return
address" field) + (size of "access link"

5 of 8

field). All of these sizes are computed at
compile time. (Note that values are added
to the SP because we are assuming that
"lower" on the stack means a higher
address.)

• May save some registers (by pushing
them onto the stack).

• Sets up the "local data" fields. This may
involve pushing actual values if the locals
are initialized as part of their
declarations, or it may just involve
subtracting their total size from the SP.

When the method returns, it:

• Restores the values of any saved
registers.

• Loads the return address into register RA
(from the AR).

• Restores the old stack pointer (SP = FP).
• Restores the old frame pointer (FP =

saved FP, i.e., the value in the control-link
field).

• Return (jump to the address in register
RA).

Example: Activation
Records

Consider the following code:

void f2(int y) {
 f1(y);
}

void f1(int x) {
 if (x > 0) f2(x-1);
}

main() {
 int a = 1;
 f(1);
}

The following pictures show the activation
records on the stack at different points
during the code's execution (only the
control link, parameter, and local variable
fields are shown).

1. When the program starts:

6 of 8

Control

Link

a 1

?

Main's

Activation

Record

FP

SP

2. After main calls f1:

Control

Link

a

x

Control

Link

1

1

?

Main's

Activation

Record

f1's

Activation

Record
FP

SP

3. After f1 calls f2:

Control

Link

a

x

Control

Link

y

Control

Link

1

1

?

0

Main's

Activation

Record

f1's

Activation

Record

f2's

Activation

Record
FP

SP

4. After f2 calls f1:

7 of 8

Control

Link

a

x

Control

Link

y

Control

Link

x

Control

Link

1

1

?

0

0

Main's

Activation

Record

f1's

Activation

Record

f2's

Activation

Record

f1's

Activation

Record
FP

SP

After this, f1 returns (and its AR is popped),
then f2 returns, then the first call to f1
returns, then the whole program ends.

TEST YOURSELF #2

Assume that stack allocation is used. Trace
the execution of the following code by
filling in the local variables, parameters,
and control link fields of the activation
records (recall that dynamically allocated
storage is stored in the heap, not on the
stack).

1. void init(int[] A, int len) {
2. for (int k=1; k<len; k++) {
3. A[k] = k;
4. }
5. }
6.
7. void main() {
8. int[] x = new int[3];
9. init(x, 3);
10. }

solution

8 of 8

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ENVIRONMENTS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ENVIRONMENTS-ANSWERS.html#ans2

Contents

• Overview
• Value Parameters
◦ Test Yourself #1

• Reference Parameters
◦ Test Yourself #2
◦ Test Yourself #3

• Value-Result Parameters
◦ Creating Aliases via Pointers
◦ Creating Aliases by Passing Globals as

Arguments
◦ Creating Aliases by Passing Same

Argument Twice
◦ Test Yourself #4

• Name Parameters
• Comparison

Overview

In a Java program, all parameters are
passed by value. However, there are three
other parameter-passing modes that have
been used in programming languages:

1. pass by reference
2. pass by value-result (also called copy-

restore)
3. pass by name

We will consider each of those modes, both
from the point of view of the programmer
and from the point of view of the compiler
writer.

First, here's some useful terminology:

1. Given a method header, e.g.:

 void f(int a, boolean b, int c)

we will use the terms parameters,
formal parameters, or just formals
to refer to a, b, and c.

1 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#value
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#value
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#ref
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#ref
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#valueResult
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#valueResult
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias1
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias1
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias2
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#alias3
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#name
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#name
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#summ
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#summ

2. Given a method call, e.g.:

 f(x, x==y, 6);

we will use the terms arguments,
actual parameters, or just actuals to
refer to x, x==y, and 6.

3. The term r-value refers to the value of
an expression. So for example,
assuming that variable x has been
initialized to 2, and variable y has been
initialized to 3:

expression r-value

x 2

y 3

x+y 5

x==y false

4. The term l-value refers to the location
or address of an expression. For
example, the l-value of a global
variable is the location in the static
data area where it is stored. The
l-value of a local variable is the
location on the stack where it is
(currently) stored. Expressions like
x+y and x==y have no l-value.

However, it is not true that only
identifiers have l-values; for example,
if A is an array, the expression A[x+y]

has both an r-value (the value stored in

the x+yth element of the array), and an
l-value (the address of that element).

L-values and r-values get their names from
the Left and Right sides of an assignment
statement. For example, the code generated
for the statement x = y uses the l-value of

x (the left-hand side of the assignment) and
the r-value of y (the right-hand side of the
assignment). Every expression has an
r-value. An expression has an l-value iff it
can be used on the left-hand side of an
assignment.

2 of 17

Value Parameters

Parameters can only be passed by value in
Java and in C. In Pascal, a parameter is
passed by value unless the corresponding
formal has the keyword var; similarly, in
C++, a parameter is passed by value unless
the corresponding formal has the symbol &
in front of its name. For example, in the
Pascal and C++ code below, parameter x is
passed by value, but not parameter y:

// Pascal procedure header
Procedure f(x: integer; var y: integer);

// C++ function header
void f(int x; int & y);

When a parameter is passed by value, the
calling method copies the r-value of the
argument into the called method's AR.
Since the called method only has access to
the copy, changing a formal parameter (in
the called method) has no effect on the
corresponding argument. Of course, if the
argument is a pointer, then changing the
"thing pointed to" does have an effect that
can be "seen" in the calling procedure. For
example, in Java, arrays are really pointers,
so if an array is passed as an argument to a
method, the called method can change the
contents of the array, but not the array
variable itself, as illustrated below:

void f(int[] A) {
 A[0] = 10; // change an element of parameter A
 A = null; // change A itself (but not the corresponding actual)
}

void g() {
 int[] B = new int [3];
 B[0] = 5;
 f(B);
 //*** B is not null here, because B was passed by value
 //*** however, B[0] is now 10, because method f changed the first element
 //*** of the array pointed to by B
}

TEST YOURSELF #1

What is printed when the following Java
program executes and why?

class Person {

3 of 17

 int age;
 String name;
}

class Test {
 static void changePerson(Person P) {
 P.age = 10;

P = new Person();
P.name = "Joe";

 }

 public static void main(String[] args) {
 Person P = new Person();

P.age = 2;
P.name = "Ann";
changePerson(P);
System.out.println(P.age);
System.out.println(P.name);

 }
}

solution

Reference Parameters

When a parameter is passed by reference,
the calling method copies the l-value of the
argument into the called method's AR (i.e.,
it copies a pointer to the argument instead
of copying the argument's value). Each time
the formal is used, the pointer is followed.
If the formal is used as an r-value (e.g., its
value is printed, or assigned to another
variable), the value is fetched from the
location pointed to by the pointer. If the
formal is assigned a new value, that new
value is written into the location pointed to
by the pointer (the new value is not written
into the called method's AR).

If an argument passed by reference has no
l-value (e.g., it is an expression like x+y),

the compiler may consider this an error
(that is what happens in Pascal, and is also
done by some C++ compilers), or it may
give a warning, then generate code to
evaluate the expression, to store the result
in some temporary location, and to copy the
address of that location into the called
method's AR (this is is done by some C++
compilers).

In terms of language design, it seems like a

4 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans1

good idea to consider this kind of situation
an error. Here's an example of code in
which an expression with no l-value is used
as an argument that is passed by reference
(the example was actually a Fortran
program, but Java-like syntax is used here):

 void mistake(int x) { // x is a reference parameter
 x = x+1;
}

 void main() {
 int a;

 mistake(1);
 a = 1;

 print(a);
 }

When this program was compiled and
executed, the output was 2! That was
because the Fortran compiler stored 1 as a
literal at some address and used that
address for all the literal "1"s in the
program. In particular, that address was
passed when "mistake" was called, and was
also used to fetch the value to be assigned
into variable a. When "mistake"
incremented its parameter, the location that
held the value 1 was incremented;
therefore, when the assignment to a was
executed, the location no longer held a 1,
and so a was initialized to 2!

To understand why reference parameters
are useful, remember that, although in Java
all non-primitive types are really pointers,
that is not true in other languages. For
example, consider the following C++ code:

class Person {
 public:
 String name;
 int age;
};

void birthday(Person per) {
 per.age++;
}

void main() {
 Person P;
 P.age = 0;
 birthday(P);
 print(P.age);
}

5 of 17

Note that in main, variable P is a Person,

not a pointer to a Person; i.e., main's

activation record has space for P.name and

P.age. Parameter per is passed by value

(there is no ampersand), so when birthday

is called from main, a copy of variable P is

made (i.e., the values of its name and age

fields are copied into birthday's AR). It is

only the copy of the age field that is

updated by birthday, so when the print

statement in main is executed, the value

that is output is 0.

This motivates some reasons for using
reference parameters:

1. When the job of the called method is to
modify the parameter (e.g., to update
the fields of a class), the parameter
must be passed by reference so that
the actual parameter, not just a copy,
is updated.

2. When the called method will not
modify the parameter, and the
parameter is very large, it would be
time-consuming to copy the
parameter; it is better to pass the
parameter by reference so that a
single pointer can be passed.

TEST YOURSELF #2

Consider writing a method to sort the
values in an array of integers. An operation
that is used by many sorting algorithms is
to swap the values in two array elements.
This might be accomplished using a swap

method:

static void swap(int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
}

Assume that A is an array of 4 integers.

Draw two pictures to illustrate what
happens when the call:

swap(A[0], A[1]);

6 of 17

is executed, first assuming that this is Java
code (all parameters are passed by value),
and then assuming that this is some other
language in which parameters are passed
by reference. In both cases, assume that
the array itself is stored in the heap (i.e.,
the space for A in the calling method's AR

holds a pointer to the space allocated for
the array in the heap). Your pictures should
show the ARs of the calling method and
method swap.

solution

It is important to realize that the code
generator will generate different code for a
use of a parameter in a method, depending
on whether it is passed by value or by
reference. If it is passed by value, then it is
in the called method's AR (accessed using
an offset from the FP). However, if it is
passed by reference, then it is in some
other storage (another method's AR, or in
the static data area). The value in the called
method's AR is the address of that other
location.

To make this more concrete, assume the
following code:

void f(int a) {
 a = a - 5;
}

void main() {
 int x = 10;
 f(a);
}

Below is the code that would be generated
for the statement a = a - 5, assuming (1)

that a is passed by value and (2) assuming

that a is passed by reference:

Passed by Value

7 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans2

lw t0,(FP)

sub t0,t0,5

sw t0,(FP)

t0=t0-5

load a's r-value into t0load a's r-value into t0

store result into f's AR

Passed by Reference

lw t0,(FP)

lw t1,(t0)

sub t1,t1,5

sw t1,(t0)
t1=t1-5

load a's
L-value into t0

store result into main's AR

load a's
r-value
into t1

Notice that when passing by reference the
cell at address FP contains the address of a

and not its value. Therefore, the first
instruction will copy the location of a into

t0 and the second instruction will extract
the value at such a location and copy it into
t1. Finally, the last instruction will copy the
result into the location pointed by t0-i.e.,
the location of a.

TEST YOURSELF #3

The code generator will also generate
different code for a method call depending
on whether the arguments are to be passed
by value or by reference. Consider the
following code:

 int x, y;
 x = y = 3;
 f(x, y);

solution

Assume that f's first parameter is passed

by reference, and that its second parameter
is passed by value. What code would be
generated to fill in the parameter fields of
f's AR?

solution

8 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans3

Value-Result Parameters

Value-result parameter passing was used in
Fortran IV and in Ada. The idea is that, as
for pass-by-value, the value (not the
address) of the actual parameters are
copied into the called method's AR.
However, when the called method ends, the
final values of the parameters are copied
back into the arguments. Value-result is
equivalent to call-by-reference except
when there is aliasing (note: "equivalent"
means the program will produce the same
results, not that the same code will be
generated).

Two expressions that have the same l-value
are called aliases. Aliasing can happen:

• via pointer manipulation,
• when a parameter is passed by reference

and is also global to the called method,
• when a parameter is passed by reference

using the same expression as an
argument more than once; e.g., call
test(x,y,x).

Will will look at examples of each of these
below.

Creating Aliases via Pointers

Pointer manipulation can create aliases, as
illustrated by the following Java code.
(Note: this kind of aliasing does not make
pass-by-reference different from pass-by-
value-result; it is included here only for
completeness of the discussion of aliasing.)

Person p, q;
 p = new Person();
 q = p;
 // now p.name and q.name are aliases (they both refer to the same location)
 // however, p and q are not aliases (they refer to different locations)

Pictorially:

9 of 17

name:

age:

A Person Object

p

q

Creating Aliases by Passing
Globals as Arguments

This way of creating aliases (and the
difference between reference parameters
and value-result parameters in the
presence of this kind of aliasing) are
illustrated by the following C++ code:

int x = 1; // a global variable

void f(int & a)
{ a = 2; // when f is called from main, a and x are aliases
 x = 0;
}

main()
{ f(x);
 cout << x;
}

As stated above, passing parameters by
value-result yields the same results as
passing parameters by reference except
when there is aliasing. The above code will
print different values when f's parameter is

passed by reference than when it is passed
by value-result. To understand why, look at
the following pictures, which show the
effect of the code on the activation records
(only variables and parameters are shown
in the ARs, and we assume that variable x is

in the static data area):

Call-by-reference Call-by-value

At time of call

10 of 17

x:

main's AR

a:f 's AR

Static Data
Area

1 x:

main's AR

a:f 's AR

Static Data
Area

1

1

After a = 2

x:

main's AR

a:f 's AR

Static Data
Area

2 x:

main's AR

a:f 's AR

Static Data
Area

1

2

After x = 0

x:

main's AR

a:f 's AR

Static Data
Area

0 x:

main's AR

a:f 's AR

Static Data
Area

0

2

After call

When f returns the final value of value-result
parameter a is copied back into the space for

x, so:

x:

main's AR

Static Data
Area

0 x:

main's AR

Static Data
Area

2

Output

0 2

Creating Aliases by Passing Same
Argument Twice

Consider the following C++ code:

 void f(int &a, &b)

11 of 17

 { a = 2;
 b = 4;
 }

 main()
 { int x;
 f(x, x);
 cout << x;
 }

Assume that f's parameters are passed by

reference. In this case, when main calls f, a

and b are aliases. As in the previous

example, different output may be produced
in this case than would be produced if f's

parameters were passed by value-result (in
which case, no aliases would be created by
the call to f, but there would be a question

as to the order in which values were copied
back after the call). Here are pictures
illustrating the difference:

Call-by-reference
Call-by-value-

result

At time of call

b:

main's AR

a:
f 's AR

x: ?

b:

main's AR

a:
f 's AR

x: ?

?

?

After a = 2

b:

main's AR

a:
f 's AR

x: 2

b:

main's AR

a:
f 's AR

x: ?

2

?

After b = 4

b:

main's AR

a:
f 's AR

x: 4

b:

main's AR

a:
f 's AR

x: ?

2

4

12 of 17

After call

main's AR x: 4 main's AR x: ?

Output

4 ???

With value-result parameter passing, the
value of x after the call is undefined, since

it is unknown whether a or b gets copied

back into x first. This may be handled in

several ways:

• Code like this (where multiple actual
parameters that are passed by value have
the same l-value) may cause a compile-
time error.

• The order in which parameter values are
copied back after a call may be defined by
the specific language.

• The order in which parameter values are
copied back after a call may be left as
implementation dependent (so code like
the above may produce different outputs
when compiled with different compilers).

TEST YOURSELF #4

Assume that all parameters are passed by
value-result.

Question 1: Give a high-level description
of what the code generator must do for a
method call.

Question 2: Give the specific code that
would be generated for the call shown
below, assuming that variables x and y are
stored at offsets -8 and -12 in the calling
method's AR.

int x, y;
f(x, y);

13 of 17

solution

Name Parameters

Call-by-name parameter passing was used
in Algol. The way to understand it (not the
way it is actually implemented) is as
follows:

• Every call statement is replaced by the
body of the called method.

• Each occurrence of a parameter in the
called method is replaced with the
corresponding argument -- the actual text
of the argument, not its value.

For example, given this code:
void Init(int x, int y)

{ for (int k = 0; i < 10; k++){

 y = 0;

 x++;

 }

}

main()

{ int j;

 int A[10];

 j = 0;

 Init(j, A[j]);

}

The following shows this (conceptual)
substitution, with the substituted code in
the dashed box:

main(){

 int j;

 int A[10];

 j = 0;

 for (int k = 0; i < 10; k++){

 A[j] = 0;

 j++;

 }

}

Actual A[j] for
formal y

Actual j for
formal y

Call-by-name parameter passing is not
really implemented like macro expansion
however; it is implemented as follows.
Instead of passing values or addresses as
arguments, a method (actually the address

14 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans4
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/PARAMETERS-ANSWERS.html#ans4

of a method) is passed for each argument.
These methods are called 'thunks'. Each
'thunk' knows how to determine the
address of the corresponding argument. So
for the above example:

• 'thunk' for j - return address of j
• 'thunk' for A[j] - return the address of the

jth element of A, using the current value
of j

Each time a parameter is used, the 'thunk'
is called; then the address returned by the
'thunk' is used.

For the example above, call-by-reference
would execute A[0] = 0 ten times, while

call-by-name initializes the whole array!

The effect of evaluating argument
expressions in the callee as needed can
have some surprising effects. For example,
an argument that would otherwise cause a
runtime crash (say divide-by-zero) won't
cause any problems until it is actually used
(if at all). Factors like these often make call-
by-name programs hard to understand - it
may require looking at every call of a
method to figure out what that method is
doing.

Call-by-name is interesting for historical,
research, and academic reasons, However,
it is considered too confusing for
developers in practice and industry has
largely passed it by in favor of call-by-value
or call-by-reference.

Comparisons of These
Parameter Passing
Mechanisms

Here are some advantages of each of the
parameter-passing mechanisms discussed
above:

Call-by-Value (when not used to pass
pointers)

15 of 17

• Doesn't cause aliasing.
• Arguments unchanged by method call, so

easier to understand calling code (no
need to go look at called method to see
what it does to actual parameters).

• Easier for static analysis (for both
programmer and compiler). For example:

 x = 0;
 f(x); {call-by-value so x not changed}
 z = x + 1; {can replace by z = 1 when optimizing}

• Compared with call-by-reference, the
code in the called method is faster
because there is no need for indirection
to access formals.

Call-by-Reference

• More efficient when passing large objects
(only need to copy addresses, not the
objects themselves).

• Permits actuals to be modified (e.g., can
implement swap method for integers).

Call-by-Value-Result

• As for call-by-value, more efficient than
call-by-reference for small objects
(because there is no overhead of pointer
dereferencing for each use).

• If there is no aliasing, can implement call-
by-value-result using call-by-reference for
large objects, so it is still efficient.

Call-by-Name

• More efficient than other approaches
when passing parameters that are never
used. For example:

f(Ackermann(4,2),0);

void f(int a, int b){

 if (b == 1){

 return a + 1;

 } else {

 return 0;

 }

}

The Ackermann function
takes enormous time to

compute

If the condition b in method f is not 1,

16 of 17

then using call-by-name, it is never
necessary to evaluate the first actual at
all! That's good because doing so would

take a long time* .

17 of 17

https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#
https://pages.cs.wisc.edu/~hasti/cs536/readings/params.html#

Contents

• Introduction
• Local Variables
◦ Doubles
◦ Test Yourself #1

• Global Variables
• Non-Local Variables
◦ Static Scoping
◦ Test Yourself #2
◦ Method #1: Access Links
◦ Test Yourself #3
◦ Summary

◦ Method #2: The Display
◦ Test Yourself #4

◦ Comparison: Access Links vs The Display
◦ Dynamic Scoping
◦ Deep Access
◦ Test Yourself #5

◦ Shallow Access
◦ Test Yourself #6

Introduction

In this set of notes we will consider how three
different kinds of variables: local, global, and
non-local, are accessed at runtime. For the
purposes of this discussion, we will define these
three categories as follows:

1. Local variables: variables that are
declared in the method that accesses them.

2. Global variables: variables that are not
declared in any method, but are accessible
in all methods. For example, the public
static fields of a Java class can be used in
any method; variables can be declared at
the file level in a C or C++ program, and
used in any function; variables can be
declared in the outermost scope of a Pascal
program and can be used in any procedure
or function.

3. Non-local variables: we will use this term
for two situations:

1. In languages that allow sub-programs
to be nested, it refers to variables that
are declared in one sub-program and
used in a nested sub-program. This is
allowed, for example, in Pascal.

2. In languages with dynamic scope, it
refers to variables that are used in a
method without being declared there
(so the use corresponds to the

1 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#contents
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#locals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#locals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#doubles
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#doubles
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#nonLocals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#nonLocals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#static
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#static
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#accessLink
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#accessLink
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#summary
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#summary
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#display
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#display
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#compare
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#compare
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#dynamic
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#dynamic
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#deep
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#deep
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry5
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry5
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#shallow
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#shallow
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry6
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#youtry6
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#intro
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#intro

declaration in the "most recently
called, still active" method).

Our discussion will include information specific
to the last programming assignment (the code
generator); i.e., how to generate MIPS code to
access these three kinds of variables.

Local Variables

Local variables and parameters are stored in the
activation record of the method in which they
are declared. They are accessed at runtime
using an offset relative to the frame pointer
(FP). Since we're assuming that "up" in the
stack means a lower address, these offsets will
be (i) positive numbers for parameters, and (ii)
negative numbers for local variables of the
procedure. For example, given this code:

 void P(int x) {
 int a, b;

 ...
}

and assuming that activation records do not
include an access link field or space for saved
registers, P's activation records will be
organized as follows:

 | | <--- Stack Pointer
 |_______________|
 b: | |
 |_______________|
 a: | | // locals have negative offsets relative to the frame pointer
 |_______________|
 | Control Link |
 |_______________|
 | Return Addr | <--- Frame Pointer
 |_______________|
 x: | | // parameters have positive offsets relative to the frame pointer
 |_______________|

We will assume that each address and each
integer takes up 4 bytes. Our memory-
organization invariant will be that (i) the stack
pointer points to the next 4-byte slot to use, and
(ii) the frame pointer points to the 4-byte slot
that holds the return address. (This invariant is
only one possible convention that one could
choose. For instance, you could choose to have
the stack pointer point to the last item pushed --
i.e., the slot for b in the example above -- and
you could have the frame pointer point to the
control link. It is necessary to pick some
convention and stick to it.)

For the example above, here are the offsets for
each of P's parameters and locals:

2 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#locals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#locals

• x: offset +4
• a: offset -8
• b: offset -12

The following MIPS code loads the values of a
and b into registers t1 and t2, respectively:

lw $t1, -8($fp) # load a
lw $t2, -12($fp) # load b

To be able to generate this code at compile time
(e.g., to process a statement like x = a + b),

the offset of each local variable must be known
by the compiler. Therefore, the offset of each
local variable from the Frame Pointer should be
stored as an attribute of the variable in the
symbol table. This can be done as follows:

• Keep track of the current offset in a global
variable (e.g., a static ASTnode field) or in the
symboltable (i.e., add a new field to the
SymTab class, with methods to set and get the
field's value).

• When the symbol-table-building code starts
processing a method, set the current offset to
+4.

• For each parameter: add the name to the
symboltable as usual, but also include the
value of the current offset as an attribute, and
then update the current offset by adding the
size of the parameter (in bytes), which will
depend on the parameter's type.

• After processing all of the parameters, set the
offset to -4 (to leave room for the control link).

• For each local variable, subtract from the
current offset the size of the local (in bytes),
and then add the name of the local to the
symboltable with the current offset as an
attribute.

Note that the "current offset" is not reset at the
start of a nested block, and thus each variable
declared (somewhere) in a method M has its
own, unique offset in the AR for M.

Note as well that the formal parameters are
traversed in left-to-right order, and are given
successively greater and greater positive offsets
(with respect to the callee's frame pointer).
Thus, we must arrange for the caller to evaluate
the actuals from right to left, so that the
resulting values are pushed on the stack in an
order that is consistent with the numbering
scheme given above.

Doubles

3 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#doubles
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#doubles

For MIPS code, each double variable requires 8
bytes. For example, given this code:

 void P(double x) {
 double a, b;

 ...
}

variable x will be stored in the bytes at offsets
+4 to +11 from the frame pointer, and the offset
that should be stored in x's symboltable entry
(and used to access x at runtime) is +4. Here
are the offsets for all of P's locals:

• x: offset +4
• a: offset -12
• b: offset -20

Pairs of floating-point registers with consecutive

numbers (e.g., { f1}, { f3}) must be used for

double-valued computations at runtime, and
there are special opcodes for operations on
double values. Note that the instructions only
refer to the even-numbered register of each pair
(although both the even-numbered and the next-
higher register both participate in the
computation). For instance, the following MIPS
code loads the values of a and b into the register

pairs { f1} and { f3}, respectively:

l.d $f0, -12($fp) # load a
l.d $f2, -20($fp) # load b

TEST YOURSELF #1

Assume that both an address and an integer
require 4 bytes of storage, and that a double
requires 8 bytes. Also assume that each
activation record includes parameters, a return
address, a control link, and space for local
variables as illustrated above. What are the
offsets (in bytes) for each of the parameters and
local variables in the following functions?

void P1(int x, int y) {
 int a, b, c;
 ...
 while (...) {
 double a, w;
 }
}

void P2() {
 int x, y;
 ...
 if (...) {
 double a;
 ...
 }
 else {
 int b, c;

f0, f2,

f0, f2,

4 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#doubles

 ...
 }
}

solution

Global Variables

As noted above, global variables are stored in
the static data area. Using MIPS code, each
global is stored in space labeled with the name
of the variable, and the variable is accessed at
runtime using its name. (Since we will be using
the SPIM simulator, and since SPIM has some
reserved words that can also be used as Simple
variable names, you will need to add an
underscore to global variable names to prevent
clashes with SPIM reserved words.)

For example, if the source code includes:

 // global variables
 int g;
 double d;

The following code would be generated to
reserve space in the static data area for
variables g and d:

 .data # put the following in the static data area
.align 2 # align on a word boundary

 _g: .space 4 # set aside 4 bytes
 .data

.align 2
 _d: .space 8

And the following code would be generated to
load the value of variable g into register t0, and
to load the value of variable d into register f0:

 lw $t0, _g # load contents of g into t0
l.d $f0, _dd # load contents of dd into f0

Non-Local Variables

Recall that we are using the term "non-local
variable" to refer to two situations:

1. In statically-scoped languages that allow
nested sub-programs, a variable can be
declared in one sub-program and accessed
in another, nested sub-program. Such
variables are "non-local" in the nested sub-
program that accesses them. These
variables are stored in the activation record
of the sub-program that declares them.
When they are used as non-local variables,
that activation record is found at runtime
either using access links or a display

5 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans1
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#nonLocals
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#nonLocals

(discussed below).
2. In dynamically-scoped languages, a

variable can be declared in one method,
and accessed in a called method. The
variable is non-local in the method that
accesses it. Two different approaches to
supporting the use of non-local variables in
dynamically-scoped languages are
discussed below.

Note that in languages (like C and C++) that
permit the same name to be used in nested
blocks within a method, we might also use the
term "non-local variable" to refer to a use of a
variable in one block that was declared in an
enclosing block. However, this is not an
interesting case in terms of runtime access. All
of a method's variables (regardless of which
block they are declared in) are stored in the
method's activation record, and are accessed
using offsets from the frame pointer, as
discussed above.

Static Scoping

First, let's consider an example (Pascal)
program that includes accesses to non-local
variables (the nesting levels of the procedures
are given for later reference):

 + program MAIN;
 | var x: integer;
 |
 | + procedure P;
 | (2) write(x);
 | +
 |
 | + procedure Q;
 | | var y: integer = x;
 | |
 | | + procedure R;
 | | | x = x + 1;
 | | | y = y + x;
 (1) (2) (3) if y<6 call R;
 | | | call P
 | | +
 | |
 | | call R;
 | | call P;
 | | if x < 5 call Q;
 | +
 |
 | x = 2;
 | call Q;
 +

solution

TEST YOURSELF #2

6 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#static
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#static
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans2

Trace the execution of this program, drawing
the activation records for the main program and
for each called procedure (include only local
variables and control links in the activation
records). Each time a non-local variable is
accessed, determine which activation record it is
stored in. Notice that the relative nesting levels
of the variable's declaration and its use does not
tell you how far down the stack to look for the
activation record that contains the non-local
variable. In fact, this number changes for
different calls (e.g., due to recursion).

solution

Method #1: Access Links

The idea behind the use of access links is as
follows:

• Add a new field to each AR -- the access link
field.

• If P is (lexically) nested inside Q, then at
runtime, P's AR's access link will point to the
access link field in the AR of the most recent
activation of Q.

• Therefore, at runtime, access links will form a
chain corresponding to the nesting of sub-
programs. For each use of a non-local x:
◦ At compile time, use the "Level Number"

attribute of x and the "Current Level
Number" (of the sub-program that is
accessing x) to determine how many links of
the chain to follow at runtime.

◦ If P at level i uses variable x, declared at
level j, follow i-j links, then use x's "Offset"
attribute to find x's storage space inside the
AR.

We will put the access-link field as the first field
in the AR (proper)—that is, register FP points to
the access-link field. Thus, the layout of an AR
with one parameter and two locals is as follows:

 | | <--- Stack Pointer
 |_______________|
 local2: | |
 |_______________|
 local1: | | // locals have negative offsets relative to the frame pointer
 |_______________|
 | Control Link |
 |_______________|
 | Return Addr |
 |_______________|
 | Access Link | <--- Frame Pointer

7 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#accessLink
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#accessLink

 |_______________|
 param1: | | // parameters have positive offsets relative to the frame pointer
 |_______________|

A good way of thinking about the ARs is in terms
of linked lists: each AR is an element that can
participate in two kinds of lists:

1. A list that is linked via the control-link
fields (i.e., the saved FP values)

2. A list that is linked via the access-link fields

The control-link list is the ``primary list,''
because it consists of the ARs of the pending
calls that have not yet completed (in the order
that they need to complete). The access links
provide another linked list (on typically a subset
of the ARs). Note that with ordinary objects you
can have exactly the same situation: each object
can have multiple fields that serve to link the
same set (or a subset) of objects in different
linked lists.

Returning to the example program given earlier,
here's a snapshot of the runtime stack after the
first call from R to P (where we show only the
access links and the local variables in the ARs):

 P | |------------+ <-- FP

+==========+ |
 R | |----------+ |

+==========+ | |
 R | |------+ | |

+==========+ | | |
 y:| 9 | | | |
 Q +----------| | | |

 | |--+ <-+ <-+ |
+==========+ | |

 x:| 4 | | |
MAIN |----------| | |
 | null |<-+ <--+

|__________|

To access the value of x from procedure R,
access links must be followed. The number of
links that must be followed is:

(level # of R) - (level # of decl of x)
= 3 - 1 = 2

So the code for y = x in procedure R would be

as shown below (Note: we assume that because
we have access links, FP always points to the
access-link field.) We also assume that both
variable x and variable y are at offset -12 in their
respective ARs. Because the access link is at
offset 0 with respect to FP, the return address is
at offset -4, and the control link is at -8. Because
x and y are the first local variables in their
respective program/procedure, they are each at

8 of 16

offset -12 in their respective ARs.)

 move $t0, FP // no links followed yet; t0 holds ptr to R's access link field
 lw $t0, ($t0) // 1 link: t0 holds ptr to Q's AR's access link field
 +-> lw $t0, ($t0) // 2 links: t0 holds ptr to main's AR's access link field
 | lw $t0, -12($t0) // t0 holds value of x
 | sw $t0, -12(FP) // y = x
 |
This code would be repeated if we needed to follow more links.

How to set up access links:

• The link is set up by the calling procedure.
• How to set up the link depends on the relative

nesting levels of the calling and called
procedures.

There are two cases:
Case 1: The calling procedure's level is less
than the called procedure's level (i.e., the called
procedure is nested directly inside the calling
procedure, because if it's not, it's invisible and it
can't be called). In this case, the called
procedure's access link should point to the
access link field of the calling procedure's AR.
This case occurs in the example when Q calls R.

In this case, the calling procedure sets up the
called procedure's access link by pushing the
value of the FP just before the call, since the FP
points to its access link. For example, when Q is
calling R, here is a picture of the stack just after
R's access link has been set up by Q:

 <-- SP
|----------|
| |------+
|==========| |

 y:| | |
 Q |----------| |

 | |--+ <-+ <-- FP
 |==========| |

 x:| | |
MAIN |----------| |

| null |<-+
|__________|

Case 2: The calling procedure's level is greater
than or equal to the called procedure's level. In
this case, the called procedure's access link
should point to an AR that is already on the
stack. The value for the new access link is found
by starting with the value of the calling
procedure's access link field (which is pointed to
by the FP), and following X-Y access links,
where:

X = calling procedure's level
Y = called procedure's level

The following code loads the value of the calling

9 of 16

procedure's access link field into register t0:

lw $t0, 0(FP)

If X == Y (i.e., no links should be followed to
find the value of the new access link), then the
value of t0 should simply be pushed onto the

stack. If X is greater than Y, then the code:

lw $t0, 0($t0)

should be generated X - Y times, before pushing
the value of t0.

To illustrate this situation, consider two cases
from the example code: R calls P, and Q calls
itself. Recall that the nesting structure of the
example program is:

 +--
 |
 | +--
 | |
 | P|
 | |
 | +--
 |
MAIN | +--
 | |
 | | +--
 | | |
 | Q| R|
 | | |
 | | +--
 | |
 | +--
 |
 +--

When R is about to call P, the stack looks like
this:

+==========+
 R | |----------+

+==========+ |
 R | |------+ |

+==========+ | |
 y:| 9 | | |
 Q +----------| | |

 | |--+ <-+ <-+
+==========+ |

 x:| 4 | |
MAIN |----------| |
 | null |<-+

|__________|

Since P is nested inside MAIN, P's access link
should point to MAIN's AR (i.e., the bottom AR
on the stack). R's nesting level is 3 and P's
nesting level is 2. Therefore, we start with the
value of R's access link (the pointer to Q's AR)
and follow one link. This retrieves the values of
Q's access link, which is (as desired) a pointer to
MAIN's AR. This is the value that will be pushed
onto the stack (copied into P's AR as its access

10 of 16

link).

When Q is about to call itself, the stack looks
like this:

|==========|
 y:| |
 Q |----------|

 | |--+
|==========| |

 x:| | |
MAIN |----------| |
 | null |<-+

|__________|

The access link in the new AR for Q should be
the same as the access link in the current AR for
Q; namely, it should be a pointer to the AR for
MAIN. This value is found by starting with the
value of Q's access link (a pointer to MAIN's AR)
and following zero links (because X = Y = 1).

TEST YOURSELF #3

Trace the execution of the example program
again. Each time a procedure is called,
determine which case applies in terms of how to
set up the called procedure's access link. Then
use the appropriate algorithm to find the value
of the new access link, and draw the new AR
with its access link.

Each time a non-local variable x is accessed,
make sure that you find its activation record by
following i - j access links (where i is the nesting
level of the procedure that uses x and j is the
nesting level of the procedure that declares x).

solution

Access Links: Summary

To use an access link:

Follow i - j links to find the AR with space for
non-local x, where i is the nesting level of the
procedure that uses x and j is the nesting level
of the procedure that declares x.

To set up an access link:

• case #1: Calling procedure's level is less than
called procedure's level: Push the value of the
FP to be the access link field of the called
procedure's AR.

• case #2: Calling procedure's level is greater

11 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/RUNTIME-ACCESS-ANSWERS.html#ans3

than or equal to the called procedure's level:
Find the value to push by starting with the
value of the calling procedure's access links,
then following X-Y links, where X = calling
procedure's level, and Y = called procedure's
level.

Method #2: The Display

The motivation for using a display is to avoid the
runtime overhead of following multiple access
links to find the activation record that contains a
non-local variable. The idea is to maintain a
global "array" called the display. Ideally, the
display is actually implemented using registers
(one for each array element) rather than an
actual array; however, it can also be
implemented using an array in the static data
area.

The size of the display is the maximum nesting
depth of a procedure in the program (which is
known at compile time). The display is used as
follows:

• When procedure P at nesting level k is
executing, DISPLAY[0],...DISPLAY[k-2] hold
pointers to the ARs of the most recent
activations of the k-1 procedures that lexically
enclose P. DISPLAY[k-1] holds a pointer to P's
AR.

• To access a non-local variable declared at level
x, use DISPLAY[x-1] to get to the AR that holds
x, then use the usual offset to get x itself.

To illustrate this, refer back to our running
example program, outlined below:

 +--
 |int x;
 |
 | +--
 | |
 | P|...x...
 | |
 | +--
 |
MAIN | +--
 | | int y;
 | |
 | | +--
 | | |...x...y...
 | Q| R|call R
 | | |call P
 | | +--
 | |
 | | call R
 | | call P
 | | if (...) call Q
 | +--

12 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#display
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#display

 |
 | call Q
 +--

Below are two pictures comparing the use of
access links with the use of a display. Both show
the same moment at runtime.

 USING ACCESS LINKS USING A DISPLAY

 ____________ ----------
 P | |------------+ P | |<--+
 |==========| | |========| | +--+
 R | |----------+ | R | |<------| | [2]
 |==========| | | |========| | +--+
 y:| | | | y:| | +---| | [1]
 Q |----------| | | Q |--------| +--+
 | |------+ <-+ | | | +---| | [0]
 |==========| | | |========| | +--+
 x:| | | | x:| | | DISPLAY
 MAIN |----------| | | MAIN |--------| |
 | null | <-+ <--+ | |<--+
 |__________| ----------

 STACK STACK

To maintain the display, a new field (called the
"save-display" field) is added to each activation
record. The display is maintained as follows:

• When a procedure at nesting level k is called:
◦ The current value of DISPLAY[k-1] is saved

in the "save-display" field of the new AR.
◦ DISPLAY[k-1] is set to point to (the save-

display field of) the new AR.
• When the procedure returns, DISPLAY[k-1] is

restored using the value saved in the "save-
display" field (of the returning procedure).

This process is illustrate below, showing how the
display and the save-display fields are updated
when R calls P (only the local variable and save-
display fields of the ARs are shown).

 Before R calls P:

 ________ ____________
 [2] | |--\ R | |
 |______| -------------->| |
 [1] | |--\ |==========|
 |______| \ y:| |
 [0] | |--\ \ Q |----------|
 |______| \ ------------>| |
 \ |==========|
 \ x:| |
 \ MAIN |----------|
 ---------->| |
 |==========|

 After R calls P:

13 of 16

 [2] | |--\ ------------
 |______| \ P | |---+
 [1] | |----\------------>| | |
 |______| \ |==========| |
 [0] | |--\ \ R | | |
 |______| \ ---------->| | |
 \ |==========| |
 \ x:| | |
 \ Q |----------| |
 \ | |<--+
 \ |==========|
 \ y:| |
 \ MAIN |----------|
 ------>| |

 |----------|

TEST YOURSELF #4

Trace the execution of the running example
program, assuming that a display is used instead
of access links. Each time a non-local variable x
is accessed, make sure that you understand how
to find its AR using the display.

Comparison: Access Links vs The
Display

• Access links can require more time (at
runtime) to access non-locals (especially when
the non-local is many nesting levels away).

• It can also require more time to set up a new
access link when a procedure is called (if the
nesting level of the called procedure is much
smaller than the nesting level of the calling
procedure).

• Displays require more space (at runtime).
• If the compiler is flexible enough to implement

the display using registers if enough are
available, or using space in the static data
area, then the compiler code itself may be
rather complicated (and error-prone).

• In practice, sub-programs usually are not very
deeply nested, so the runtime considerations
may not be very important.

Dynamic Scoping

Recall that under dynamic scoping, a use of a
non-local variable corresponds to the
declaration in the "most recently called, still
active" method. So the question of which non-
local variable to use can't be determined at
compile time. It can only be determined at run-
time. There are two ways to implement access to
non-locals under dynamic scope: "deep access"

14 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#compare
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#compare
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#compare
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#dynamic
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#dynamic

and "shallow access", described below.

Deep Access

Using this approach, given a use of a non-local
variable, control links are used to search back in
the stack for the most recent AR that contains
space for that variable. Note that this requires
that it be possible to tell which variables are
stored in each AR; this is more natural for
languages that are interpreted rather than being
compiled (which was indeed the case for
languages that used dynamic scope). Note also
that the number of control links that must be
followed cannot be determined at compile time;
in fact, a different number of links may be
followed at different times during execution, as
illustrated by the following example program:

void P() { write x; }

void Q() {
 x = x + 1;
 if (x < 23) Q();
 else P();
}

void R() {
 int x = 20;
 Q();
 P():
}

void main() {
 int x = 10;
 R();
 P();
}

TEST YOURSELF #5

Trace the execution of the program given above.
Note that method P includes a use of non-local
variable x. How many control links must be
followed to find the AR with space for x each
time P is called?

Shallow Access

Using this approach, space is allocated (in
registers or in the static data area) for every
variable name that is in the program (i.e., one
space for variable x even if there are several
declarations of x in different methods). For every
reference to x, the generated code refers to the
same location.

15 of 16

https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#deep
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#deep
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#shallow
https://pages.cs.wisc.edu/~hasti/cs536/readings/vars.html#shallow

When a method is called, it saves, in its own AR,
the current values of all of the variables that it
declares itself (i.e., if it declares x and y, then it
saves the values of x and y that are currently in
the space for x and y). It restores those values
when it finishes.

Note that this means that when a method
accesses a non-local variable x, the value of x
from the most-recently-called, still-active
method is stored in the (single) location for x.
There is no need to go searching down the
stack!

TEST YOURSELF #6

Question 1: Trace the execution of the program
given above again, this time assuming that
shallow access is used.

Question 2: What are the advantages and
disadvantages of shallow access compared with
deep access? (Consider both time and space
requirements.)

16 of 16

Contents

• Overview
• Spim
• Auxiliary Fields and Methods
• Code Generation for Global Variable
Declarations
• Code Generation for Functions

• Function Preamble
• Function Entry
• Function Body
• Function Exit

• Code Generation for Statements

• Write Statement
• If-Then Statement
◦ Test Yourself #1

• Return Statement
• Read Statement
• Digression: Code Generation for IdNodes
◦ genJumpAndLink
◦ codeGen
◦ genAddr

• Assignment Statement

• Code Generation for Expressions

• Assign
• Literals
• Function Call
• Non Short-Circuited Operators
• Short-Circuited Operators
◦ Test Yourself #2

• Control-Flow Code

• Test Yourself #3
• Test Yourself #4

Overview

Code can be generated by a syntax-directed
translation while parsing or by traversing the
abstract syntax tree after the parse (i.e., by
writing a codeGen method for the appropriate
kinds of AST nodes). We will assume the latter
approach, and will discuss code generation for
a subset of the C language. In particular, we
will discuss generating MIPS assembly code

1 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#spim
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#spim
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#globals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functions
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functions
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionPreamble
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionPreamble
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionEntry
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionEntry
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionBody
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionBody
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionReturn
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionReturn
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#printstmt
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#printstmt
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#return
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#return
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#read
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#read
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#names
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#names
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#jal
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#jal
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#codeGen
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#codeGen
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#genAddr
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#genAddr
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#assign
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#assign
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#exps
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#exps
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#assignExp
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#assignExp
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#literals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#literals
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#call
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#call
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#arith
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#arith
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#logic
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#logic
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#jumpcode
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#jumpcode
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#youtry4

suitable for input to the Spim interpreter.
Some information on Spim is provided in the
next section; the following sections discuss
code generation for:

• global variables
• functions (entry and exit)
• statements
• expressions

Spim

Documentation on Spim is available on-line:

• Reference Manual (pdf)
• Instructions for download and install (html)

To run the (plain) Spim interpreter, type:

spim -file <name>

where <name> is the name of a file that

contains MIPS assembly code (the file
produced by your compiler). This will cause
Spim to process the code in the file; if there
are syntax errors, they will be reported, and
the code will not execute. Otherwise, the code
will execute; output will be printed to your
terminal, and you will get error messages for
any run-time errors that result.

To run Spim with an X-windows interface (on a
Linux machine), type just: xspim. This will

cause a window to open. Click on the load

button in that window, then type in the name
of your assembly-code file, then press return.

If there are syntax errors, you will see error
messages. If there are no errors, you can run
your program by clicking on run, then (in the

small window that will be opened) on OK. If

your program generates any output, a new
window will be opened to display that output.

Spim uses the following special registers
(there are others; you can see the on-line
Spim documentation for those, but you should
not need them for the class project):

Register Purpose

$sp stack pointer

$fp frame pointer

2 of 27

http://www.cs.wisc.edu/~horwitz/spim/spim.pdf
http://www.cs.wisc.edu/~horwitz/spim/spim.pdf
http://www.cs.wisc.edu/~larus/spim.html
http://www.cs.wisc.edu/~larus/spim.html

$ra return address

$v0

used for system calls and
to return int values from
function calls, including the
syscall that reads an int

$f0

used to return double
values from function calls,
including the syscall that
reads a double

$a0
used for output of int and
string values

$f12
used for output of double
values

$t0 - $t7 temporaries for ints

$f0 -
$f30

registers for doubles (used
in pairs; i.e., use $f0 for the
pair $f0, $f1)

Auxiliary Constants and
Methods

To simplify the task of code generation, it is
convenient to have a set of constants (final
static fields) that define the string
representations of the registers that will be
used in the generated code and the values
used to represent true and false, as well as a
set of methods for actually writing the
generated code to a file. We will assume that
we have the following register constants: SP,
FP, RA, V0, A0, T0, T1, F0, F12, as well as the
constants TRUE and FALSE (and that TRUE is
represented as 1, and false as 0). We will also
assume that we have the following methods:

Method Purpose

generate

write the given op
code and
arguments, nicely
formatted, to the
output file

generateIndexed

the arguments are:
an op code, a
register R1,
another register
R2, and an offset;
generate code of

3 of 27

the form: op R1,

offset(R2)

genPush(String
reg, int bytes)

generate code to
push the value in
the given register
onto the stack;
parameter bytes is

4 for an int and 8
for a double

genPop(String
reg, int bytes)

generate code to
pop the top-of-
stack value into the
given register

nextLabel
return a string to
be used as a label
(more on this later)

genLabel
given a label L,
generate: L:

Code Generation for
Global Variable
Declarations

For each global variable v, generate:

.data

.align 2 # align on a word boundary
 _v: .space N

where N is the size of the variable in bytes.

(Scalar integer variables require 4 bytes;
double variables require 8 bytes.) This code
tells the assembler to set aside N bytes in the
static data area, in a location labeled with the
name _v.

Example: Given this source code:

int x;
double y;

you should generate this code:

.data

.align 2
 _x: .space 4

.data

.align 2
 _y: .space 8

It is not actually necessary to generate .data

if the previous generated code was also for a
global variable declaration; however, since
function declarations can be intermixed with

4 of 27

global variable declarations (and cause code
to be generated in the text area, not the static
data area), this may not be the case; it is safe
(and easier) just to generate those directives
for every global variable.

Code Generation for
Functions

For every function you will generate code for:

• the function "preamble"
• the function entry (to set up the function's

Activation Record)
• the function body (its statements)
• function exit (restoring the stack, and

returning to the caller).

Function Preamble

For the main function, generate:

.text

.globl main
 main:

For all other functions, generate:

 .text
 _<functionName>:

using the actual name in place of
<functionName>. This tells the assembler to

store the following instructions in the text
area, labeled with the given name.

After generating this "preamble" code, you
will generate code for (1) function entry, (2)
function body, and (3) function exit.

Function Entry

We assume that when a function starts
executing, the stack looks like this:

5 of 27

caller's

AR

parameters

FP

SP

Before starting to execute the statements in
the function body, we want it to look like this:

caller's

AR

parameters

FP

SP

new

AR
return address

control link

(saved FP)

local variables

The parameters will already be on the stack
(pushed by calling function). So the code for
function entry must do the following:

1. push the return address
2. push the control link
3. set the FP
4. push space for local variables

Here's the code you need to generate:

 # (1) Push the return addr
 sw $ra, 0($sp)
 subu $sp, $sp, 4
 # (2) Push the control link
 sw $fp, 0($sp)
 subu $sp, $sp, 4
 # (3) set the FP
 # Note: our convention for $sp is that it points to the first unused word of the stack.
 # The reason for adding 8 is that the unused word and the control link each take 4 bytes

6 of 27

 addu $fp, $sp, 8
 # (4) Push space for the locals
 subu $sp, $sp, <size of locals in bytes>

Note: <size of params> and <size of

locals> will need to be available to the code

generator. The symbol-table entry for the
function name will have information about the
parameters (because that will have been used
for type checking). For example, it might have
a list of the symbol-table entries for the
parameters. You could also store the total size
of the parameters in the function name's
symbol-table entry, or you could write a
method that takes the list of parameters as its
argument and computes the total size. It is not
so easy to compute the total size of the local
variables at code-generation time; it is
probably a better idea to do that during name
analysis. The name-analysis phase will be
computing the offsets for the parameters and
local variables anyway; it should not be
difficult to extend that code to also compute
the total size of the locals (and to store that
information in the function name's symbol-
table entry).

Function Body

Note: we are talking about the codeGen
method for the FnBodyNode, whose subtree
will look like this:

FnBodyNode

StmtListNodeDeclListNode

There is no need to generate any code for the
declarations. So to generate code for the
function body, just call the codeGen method of
the StmtListNode, which will in turn call the
codeGen method of each statement in the list.
What those methods will do is discussed
below in the section on Code Generation for
Statements.

Function Exit

7 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#stmts

Just before a function returns, the stack looks
like this:

caller's

AR

parameters

FP

SP

new

AR
return address

control link

(saved FP)

local variables

We need to generate code to pop off this
function's AR, then to jump to the address in
the "return address" field. Popping off the AR
means restoring the SP and FP. Note that we
want to move the SP to where the FP is
currently pointing, but if there may be an
interrupt that could use the stack, we don't
want to change the SP until we're finished
with all of the values in the current AR (in
particular, the control link, which is used to
restore the FP). Therefore, we use a
temporary register (t0) to save the address
that is initially in the FP

Here is the code that needs to be generated:

 lw $ra, 0($fp) # load return address
 move $t0, $fp # FP holds the address to which we need to restore SP
 lw $fp, -4($fp) # restore FP
 move $sp, $t0 # restore SP
 jr $ra # return

Note that there are two things that cause a
function to return:

1. A return statement is executed, or

2. The last statement in the function is
executed (i.e., execution "falls off the
end" of the function).

8 of 27

You could generate the "return" code given
above for each return statement as well as

after the last statement in the function body. A
more space-efficient approach would be:

• Generate the "return" code just once after
generating the code for the function body.
Label that code with a unique label (e.g., the
result of calling nextLabel).

• For each return statement, generate a jump

to the label you used (the op code for an
unconditional jump is just b).

What about a return statement that returns a
value? As discussed below, the codeGen
method for the returned expression will
generate code to evaluate that expression,
leaving the value on the stack. The MIPS
convention is to use register V0 to return a int
value from a function and to use register F0 to
return a double value. So the codeGen method
for the return statement should generate code
to pop the value from the stack into the
appropriate register (before generating the
"return" code or the jump to the return code
discussed above).

Code Generation for
Statements

You will write a different codeGen method for
each kind of StmtNode. You are strongly
advised to write this method for the
WriteIntStmtNode, WriteDblStmtNode, and
WriteStrStmtNode first. Then you can test
code generation for the other kinds of
statements and the expressions by writing a
program that computes and prints a value. It
will be much easier to find errors in your code
this way (by looking at the output produced
when a program is run) than by looking at the
assembly code you generate.

Write Statement

To generate code for a write statement whose
expression is of type int you must:

1. Call the codeGen method of the
expression being printed. That method
will generate code to evaluate the

9 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux

expression, leaving that value on the top
of the stack.

2. Generate code to pop the top-of-stack
value into register A0 (a special register
used for output of strings and ints)

3. Generate code to set register V0 to 1.
4. Generate a syscall instruction.

Below is the code you would write for the
codeGen method of the WriteIntStmtNode.

 // step (1)
 myExp.codeGen();

 // step (2)
 genPop(A0, 4);

 // step (3)
 generate("li", V0, 1);

 // step (4)
 generate("syscall");

The code for the WriteStrStmtNode and the
WriteDblStmtNode is similar, except for the
following:

• For a string, the codeGen method of the
expression being printed will leave the
address of the string on the stack.

• For a double, the value to be written must
be popped into register F12 instead of A0.

• For a string, register V0 must be set to 4.
• For a double, register V0 must be set to 3.

If-Then Statement
The AST for an if-then statement looks like:

 | IfStmtNode |

 / | \
 --------- -------------- -------------
 | ExpNode | | DeclListNode | | StmtListNode|
 --------- -------------- -------------

There are two different approaches to
generating code for statements that involve
conditions (e.g., for if statements and while
loops):

1. The numeric method, and
2. the control-flow method.

We will discuss code generation for if-then
statements assuming the numeric method
here; the control-flow method will be
discussed later. The code generated by the

10 of 27

IfStmtNode's codeGen method will have the
following form:

1. Evaluate the condition, leaving the value
on the stack.

2. Pop the top-of-stack value into register
T0.

3. Jump to FalseLabel if T0 == FALSE.
4. Code for the statement list.
5. FalseLabel:

Labels

Note that the code generated for an if-then
statement will need to include a label. Each
label in the generated code must have a
unique name (although we will refer to labels
in these notes using names like "FalseLabel"
as above). As discussed above, we will assume
that there is a method called nextLabel that
returns (as a String) a new label every time it
is called, and we will assume that there is a
method called genLabel that prints the given
label to the assembly-code file.

TEST YOURSELF #1

Question 1: What is the form of the code
generated by an IfElseStmtNode's codeGen
method?

Question 2: What is the actual code that
needs to be written for the IfStmtNode's
codeGen method?

Question 3: What is the form of the code
generated by a WhileStmtNode's codeGen
method?

solution

Return Statement

The AST for a return statement is either:

 | ReturnStmtNode |

or:

11 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#aux
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html

 | ReturnStmtNode |

 |

 | ExpNode |

As discussed above, if a value is being
returned, the ReturnStmtNode's codeGen
method should call its ExpNode's codeGen
method (to generate code to evaluate the
returned expression, leaving the value on the
stack), then should generate code to pop that
value into register V0 or register F0
(depending on its type).

To generate the code that actually does the
return, use one of the following approaches:

1. For each return statement in the
program, generate a copy of the code
that pops the AR off the stack then jumps
to the return address (that code was
discussed above under Function Exit), or

2. For each return statement in the
program, generate a jump to the "return"
code that is generated at the end of the
function. Note that in this case you will
need to label that return code, and you
will need to know what that label is when
generating code for a return statement.

Read Statement

The AST for a read statement is one of the
following:

 ------------------- -------------------
 | ReadIntStmtNode | | ReadDblStmtNode |
 ------------------- -------------------
 | |
 ---------- ----------
 | IdNode | | IdNode |
 ---------- ----------

To read an integer value into register V0, you
must generate this code:

 li $v0, 5
syscall

The code loads the special value 5 into
register V0, then does a syscall. The fact that
V0 contains the value 5 tells the syscall to
read an integer value from standard input,

12 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#returnV0
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#returnV0
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionReturn
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#functionReturn

storing the value back into register V0. So we
must start by generating the above code, then
we must generate code to store the value from
V0 to the address of the IdNode.

To read a double value, load the value 7 into
V0, do a syscall, and expect the input value to
be in register F0 (not V0).

Digression: Code Generation for
IdNodes

Before considering other kinds of statements,
let's think about the role identifiers will play
in code generation. Names show up in the
following contexts:

• function calls (the name of the called
function)

• expressions (an expression can be just a
name, or a name can be the operand of any
operator)

• assignment statements (on the left-hand
side)

The code that needs to be generated for the
name will be different in each context:

1. For a function call, we will need to
generate a jump-and-link instruction
using the name of the function (the same
name that was generated as a label in the
function's "preamble" code).

2. For an expression, we will need to
generate code to fetch the current value
either from the static data area or from
the current Activation Record, and to
push that value onto the stack.

3. For an assignment, we will need to
generate code to push the address of the
variable (either the address in the static
data area, or in the current Activation
Record) onto the stack. Then we will
generate code to store the value of the
right-hand-side expression into that
address.

Therefore, it seems reasonable to write three
different code-generation methods for the
IdNode class; for example:

• genJumpAndLink,

13 of 27

• codeGen,
• genAddr.

We use "codeGen" for the second case
(fetching the value and pushing it onto the
stack) since that is what the codeGen methods
of all ExpNodes must do.

genJumpAndLink

The genJumpAndLink method will simply
generate a jump-and-link instruction (with
opcode jal) using the appropriate label as the

target of the jump. If the called function is
"main", the label is just "main". For all other
functions, the label is of the form:

_<functionName>

codeGen

The codeGen method must copy the value of
the global / local variable into a register (e.g.,
T0 for an int variable and F0 for a double),
then push the value onto the stack. Different
code will be generated for a global and a local
variable. Below are four examples.

lw $t0 _g
// load the value of int

global g into T0

lw fp)

// load the value of the int

local stored at offset 0

into T0

l.d $f0 _d
// load the value of dbl

global d into F0

l.d

fp)

// load the value of the dbl

local stored at offset -4

into F0

Note that this means there must be a way to
tell whether an IdNode represents a global or
a local variable. There are several possible
ways to accomplish this:

• The symbol-table entry includes a "kind"
field (which distinguishes between globals
and locals).

• Different sub-classes of the Sym class are
used for globals and for local variables (so
you can tell whether you have a global or a
local using "instanceof", or using an
IsGlobal method that you write for each sub-

t00(

f0 − 4(

14 of 27

class of Sym).
• The symbol-table entry includes an "offset"
field; for local variables, that field has a
value less than or equal to zero, while for
globals, the value is greater than zero.

genAddr

The genAddr method must load the address of
the identifier into a register (e.g., T0), then
push it onto the stack. The code is very similar
to the code to load the value of the identifier;
we just use the la (load address) opcode
instead of the lw (load word) or l.d (load
double) opcode.

Here is the code you need to generate to load
the address of a global variable g into register
T0 (this works whether g is int or double,

since an address always takes 4 bytes):

la $t0, _g

and here is the code for a local, stored at
offset -8:

la fp)

Assignment Statement

The AST for an assignment statement looks
like this:

AssignStmtNode
 |

 | AssignNode |

 / \

 -------- ---------
 | IdNode | | ExpNode |
 -------- ---------

The AssignStmtNode's codeGen method can
call the AssignNode's method to do the
assignment, but be careful: an AssignNode is
a subclass of ExpNode, so like all nodes that
represent expressions, it must leave the value
of the expression on the stack. Therefore, the
AssignStmtNode must generate code to pop
(and ignore) that value.

Code Generation for

t0,−8(

15 of 27

Expressions

The codeGen method for the subclasses of
ExpNode must all generate code that
evaluates the expression and leaves the value
on top of the stack. We have already talked
about how to do this for IdNodes; in the
subsections below we discuss code generation
for other kinds of expressions.

Assign

The codeGen method for an assignment
expression must generate code to:

1. Evaluate the right-hand-side expression,
leaving the value on the stack.

2. Push the address of the left-hand-side Id
onto the stack.

3. Store the value into the address.
4. Leave a copy of the value on the stack.

Most of the work is done by calling the
AssignNode's children's methods: the
codeGen method of the right-hand-side
ExpNode, and the genAddr method of the left-
hand-side IdNode. How to accomplish the rest
of the assignment is left to you to figure out (it
isn't too difficult).

Literals

The codeGen methods for IntLitNodes must
simply generate code to push the literal value
onto the stack. The generated code will look
like this:

 li $t0, <value> # load value into T0
 sw $t0, ($sp) # push onto stack
 subu $sp, $sp, 4

The code for a DblLitNode is similar, except
that the value must be loaded into a double
register using the appropriate opcode, and the
"push" code is different for a double value. For
example:

 li.d $f0, <value> # load value into F0
 s.d $f0, -4($sp) # push onto stack
 subu $sp, $sp, 8

For a StringLitNode, the string literal itself

16 of 27

must be stored in the static data area, and its
address must be pushed. The code to store a
string literal in the static data area looks like
this:

 .data
 <label>: .asciiz <string value>

Note:

1. <label> needs to be a new label; e.g.,
returned by a call to nextLabel.

2. The <string value> needs to be a string
in quotes. You should be storing string
literals that way, so just write out the
value of the string literal, quotes and all.

To avoid storing the same string literal value
more than once, keep a hashtable in which the
keys are the string literals, and the associated
information is the static-data-area label. When
you process a string literal, look it up in the
hashtable: if it is there, use its associated
label; otherwise, generate code to store it in
the static data area, and add it to the
hashtable.

The code you need to generate to push the
address of a string literal onto the stack looks
like this:

 .text
 la $t0, <label> # load addr into $t0
 sw $t0, ($sp) # push onto stack
 subu $sp, $sp, 4

Function Call

The AST for a function call looks like:

CallExpNode
 / \

 -------- -------------
 | IdNode | | ExpListNode |
 -------- -------------

We need to generate code to:

1. Evaluate each actual parameter, pushing
the values onto the stack;

2. Jump and link (jump to the called
function, leaving the return address in
the RA register).

3. Push the returned value (which will be in

17 of 27

register V0 or F0 depending on the
return type) onto the stack.

Since the codeGen method for an expression
generates code to evaluate the expression,
leaving the value on the stack, all we need to
do for step 1 is call the codeGen method of the
ExpListNode (which will in turn call the
codeGen methods of each ExpNode in the
list). For step 2, we just call the
genJumpAndLink method of the IdNode. For
step 3, we just call genPush(V0, 4) or
genPush(F0, 8).

Note that there is also a call statement:

CallStmtNode

 |

CallExpNode
 / \

 -------- -------------
 | IdNode | | ExpListNode |
 -------- -------------

In this case, the called function may not
actually return a value (i.e., may have return
type void). It doesn't hurt to have the
CallExpNode's codeGen method push the
value in V0 (or F0) after the call (it will just be
pushing some random garbage), but it is
important for the CallStmtNode's codeGen
method to pop that value.

Non Short-Circuited Operators

In general, the codeGen methods for the non
short-circuited operators (PlusNode,
MinusNode, ..., NotNode, LessNode, ...,
EqualsNode, etc.) must all do the same basic
sequence of tasks:

1. Call each child's codeGen method to
generate code that will evaluate the
operand(s), leaving the value(s) on the
stack.

2. Generate code to pop the operand
value(s) off the stack into register(s)
(e.g., T0 and T1 for ints; F0 and F2 for
doubles). Remember that if there are two
operands, the right one will be on the top
of the stack.

18 of 27

3. Generate code to perform the operation
(see Spim documentation for a list of
opcodes).

4. Generate code to push the result onto the
stack.

The relational and equality operators are
more complicated if they are applied to double
operands (because there are no opcodes that
"directly" compute the desired result).
However, implementing those cases is not
required for the class project (unless you want
extra credit), so we will not discuss the details
here.

To minimize the amount of code you must
write, you might want to define subclasses of
ExpNode that have very similar code-
generation methods. For example, you could
define a BinaryExpNode class whose codeGen
method does all of the steps above, calling an
opCode method (that would be implemented
in each BinaryExpNode subclass) to get the
appropriate opcode for use in step 3.

Note that the comparison operators
(described in Section 2.6 of the Spim
Reference Manual) produce one when the
result of the comparison is true. However, the
not operator does a bitwise logical negation,
so it will not work correctly if you use 0 and 1
to represent true and false. Thus, it is better
to use the seq operator instead of the not
operator.

Example: Recall that the AST for an addition
looks like this:

PlusNode
 / \

 --------- ---------
 | ExpNode | | ExpNode |
 --------- ---------

Here is the codeGen method for the PlusNode,
assuming that both operands are ints.

public void codeGen() {
 // step 1: evaluate both operands
 myExp1.codeGen();
 myExp2.codeGen();

 // step 2: pop values in T0 and T1
 genPop(T1, 4);
 genPop(T0, 4);

19 of 27

 // step 3: do the addition (T0 = T0 + T1)
 generate("add", T0, T0, T1);

 // step 4: push result
 genPush(T0, 4)
}

To illustrate how code is generated for an
expression involving several operators,
consider generating code for the expression: b

+ c * d. Here is the AST for the expression:

 PlusNode
 / \

 IdNode TimesNode
 b / \
 IdNode IdNode
 c d

Below is the sequence of calls that would be
made at compile time to generate code for
this expression, and a description of what the
generated code does.

 Sequence of calls What the generated code does
----------------- ----------------------------

 +--- PlusNode.codeGen()
 | IdNode.codeGen() ---------> push b's value
 | +- TimesNode.codeGen()
 | | IdNode.codeGen() ---------> push c's value
 | | IdNode.codeGen() ---------> push d's value
 | |
 | +-------------------------------> pop d's value into T1
 | pop c's value into T0
 | T0 = T0 * T1
 | push T0's value
 |
 +---------------------------------> pop result of * into T1
 pop b's value into T0
 T0 = T0 + T1
 push T0's value

Short-Circuited Operators

The short-circuited operators are represented
by AndNodes and OrNodes. "Short-circuiting"
means that the right operand is evaluated only
if necessary. For example, for the expression
(j != 0) && (k/j > epsilon), the sub-

expression (k/j > epsilon) is evaluated only

if variable j is not zero. Therefore, the code

generated for an AndNode must work as
follows:

 evaluate the left operand
 if the value is true then
 evaluate the right operand;
 that value is the value of the whole expression

20 of 27

 else
 don't bother to evaluate the right operand
 the value of the whole expression is false

Similarly, for an OrNode:

 evaluate the left operand
 if the value is false then
 evaluate the right operand;
 that value is the value of the whole expression
 else
 don't bother to evaluate the right operand
 the value of the whole expression is true

This means that the code generated for the
logical operators will need to involve some
jumps depending on the values of some
expressions.

TEST YOURSELF #2

Expand the outlines given above for the code
generated for AndNodes and OrNodes, giving
a lower-level picture of the generated code.
Use the outline of the code generated for an
if-then statement as a model of what to write.

solution

Control-Flow Code

As mentioned above in the section on If-Then
Statements, there are actually two different
approaches to generating code for statements
with conditions (like if statements and while
loops):

1. The numeric approach: This is the
approach that we have assumed so far.
Using the numeric approach, the
codeGen method for a statement with a
condition generates code to evaluate the
condition, leaving the value on the stack.
That value is then popped, and a jump is
executed if it has a particular value.

2. The control-flow or jump-code approach:
In this case, the code-generation method
for the condition has two parameters,
both of which are labels (i.e., Strings)
named TrueLabel and FalseLabel.
Instead of leaving the value of the
condition on the stack, the code
generated to evaluate the condition
jumps to the TrueLabel if the condition is

21 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if
https://pages.cs.wisc.edu/~hasti/cs536/readings/codegen.html#if

true, and jumps to the FalseLabel if the
condition is false.

We will assume that the new code-generation
method for the condition is called
genJumpCode. As we will see, the reason to
prefer the control-flow approach over the
numeric approach is that, using the control-
flow approach, we will generate fewer
instructions for statements that involve
conditions (so the generated code will be
smaller and will run faster).

First, let's reconsider code generation for an
if-then statement; this time we'll use the
control-flow method instead of the numeric
method for evaluating the condition part of
the statement. Under this new assumption,
the code generated by the IfStmtNode's
codeGen method will have the following form:

 -- code to evaluate the condition, jumping to TrueLab if it is true,
 and to DoneLab if it is false --

 TrueLab:
 -- code for the statement list --
 DoneLab:

The actual code written for the IfStmtNode's
codeGen method will be:

public void codeGen() {
 String trueLab = nextLabel();
 String doneLab = nextLabel();
 myExp.genJumpCode(trueLab, doneLab);
 genLabel(trueLab);
 myStmtList.codeGen();
 genLabel(doneLab);
}

To implement the control-flow approach, in
addition to changing the codeGen method for
the statements that have conditions, we must
also write a new genJumpCode method for
each AST node that could represent a
condition. Below, we look at two
representative cases, for IdNode and
LessNode. We give the code generated for the
(old) numeric approach, and for the (new)
control-flow approach so that we can see
which code is better (in terms of the number
of instructions). (The code given below
assumes that all operands are int, and it is not
quite assembly code -- for example, for clarity,
we use "push" instead of the actual two
instructions that implement a push operation.)

 IdNode: numeric control-flow

22 of 27

 ------- ------------

 lw $t0, <var's addr> lw $t0, <var's addr>
 push $t0 beq $t0, FALSE, falseLab
 b trueLab

Note that in both approaches to generating
code for an IdNode, 3 instructions are
generated (because "push" is actually 2
instructions). However, while all 3 of the
numeric-approach instructions will always
execute, the last instruction generated by the
control-flow approach will execute only if the
value of the Id is true.

 LessNode: numeric control-flow
 ------- ------------

 -- code to evaluate both operands -- ditto
 -- pop values into T1, T0 -- ditto
 slt $t2, $t0, $t1 blt $t0, $t1, trueLab
 push $t2 b falseLab

The operands of a LessNode are integer
expressions, not boolean expressions, so both
approaches start by generating (the same)
code to evaluate the operands and to pop their
values into registers T0 and T1. After that,
however, the numeric approach will generate
3 instructions (to set $t2 to TRUE or FALSE as
appropriate, then to push that value onto the
stack -- remember that "push" is really two
instructions), while the control-flow code will
generate only 2 instructions. Furthermore, as
was the case for the IdNode, all three of the
numeric-approach instructions will always
execute, while the last instruction generated
by the control-flow approach will only execute
if the comparison evaluates to FALSE.

Now let's consider how to write the new
genJumpCode method for the short-circuited
operators (AndNodes and OrNodes).

Recall that the AST for an && expression
looks like this:

AndNode
 / \

 --------- ---------
 | ExpNode | | ExpNode |
 --------- ---------

Here's how the genJumpCode method of the
AndNode works:

• Start by calling the genJumpCode method of

23 of 27

the left child. That call will generate code to
evaluate the left operand, jumping to the
"TrueLabel" that we pass if its value is true,
and jumping to the "FalseLabel" that we
pass if its value is false.

• So what labels should be passed?
◦ If the left operand is false, then the value

of the whole expression is false, so pass
the given "FalseLabel" as the "FalseLabel"
in the recursive call.

◦ If the left operand is true, then we must
evaluate the right operand, so pass a new
label as the "TrueLabel" in the recursive
call.

• After the call to the left child's
genJumpCode method, call genLabel to
generate the new label.

• Finally, call the genJumpCode method of the
right child.

• What labels should be passed as the
arguments to the right child's genJumpCode
method?
◦ This expression will only be evaluated if

the left operand evaluated to true; in that
case, the value of this expression (the
right operand) is the value of the whole
expression. Therefore, for this recursive
call, pass the original "TrueLabel" and
"FalseLabel".

The AndNode's genJumpCode method would
be:

public void genJumpCode(String trueLab, String falseLab) {
 String newLab = nextLabel();

 myExp1.genJumpCode(newLab, falseLab);
 genLabel(newLab);
 myExp2;genJumpCode(trueLab, falseLab);
}

Example: Consider the code that would be
generated for the statement: if (a && b>0)

{ ... }, represented by the AST:

 | IfStmtNode |

 / | \
 --------- -------------- -------------
 | AndNode | | DeclListNode | | StmtListNode|
 --------- -------------- -------------
 / \
 -------- ----------
 | IdNode | | LessNode |
 -------- ----------
 / \

24 of 27

The IfStmtNode's codeGen method would
create two labels, TrueLab and DoneLab, and
would call the AndNode's genJumpCode
method, passing those labels as the
arguments. The AndNode's genJumpCode
method would create one new label (NewLab)
and then would call the genJumpCode method
of its left child (the IdNode), passing NewLab
and DoneLab as the arguments. It would then
generate the NewLab label, and then would
call its right child's genJumpCode method,
passing TrueLab and DoneLab. The code
generated for the whole condition would look
like this:

 Generated Code Generated By
 -------------- ------------

 -- code to load the value of a into T0 IdNode
 jump to DoneLab if T0 == FALSE IdNode
 jump to NewLab IdNode
NewLab: AndNode
 -- code to push the value of b LessNode's child
 -- code to push the iteral 0 LessNode's child
 pop into T1 LessNode
 pop into T0 LessNode
 jump to TrueLab if T0 < T1 LessNode
 jump to DoneLab LessNode

(Of course, the actual label would be
something like L3, not NewLab.) After calling

the AndNode's genJumpCode method, the
IfStmtNode's codeGen method would call
genLabel to print TrueLab, then would call its
StmtList child's codeGen method to generate
code for the list of statements. Finally, it
would call genLabel to print DoneLab. So the
code generated for this if statement would be
like this:

 -- code to load the value of a into T0
 jump to DoneLab if T0 == FALSE
 jump to NewLab
NewLab:
 -- code to push the value of b
 -- code to push the iteral 0
 pop into T1
 pop into T0
 jump to TrueLab if T0 < T1
 jump to DoneLab
TrueLab:

 -- code for the list of statements
DoneLab:

TEST YOURSELF #3

Question 1: What is the form of the code

25 of 27

generated by an OrNode's genJumpCode
method?

Question 2: What is the form of the code
generated by a NotNode's genJumpCode
method?

solution

How does the code generated for an AndNode
using the control-flow method compare to the
code generated using the numeric method?
Here are outlines of the code generated in
each case:

 Numeric Code Control-Flow Code
 ------------ -----------------

 -- code to evaluate left -- code to evaluate left
 -- operand, leaving the -- operand, including jumps
 -- value on the stack -- to NewLab and FalseLab

pop into T0
goto TrueLab if T0 == TRUE newLab:
push FALSE
goto DoneLab

TrueLab:
 -- code to evaluate right -- code to evaluate right
 -- operand, leaving the -- operand, including
 -- value on the stack -- jumps to TrueLab and
 -- FalseLab
DoneLab:

Note that the numeric code includes 6
instructions (shown in bold) in addition to the
ones generated by the codeGen methods of
the two children, while in the control-flow
case, no instructions are generated by the
AndNode itself (just a label); the instructions
are all generated by the genJumpCode
methods of its two children. Those children
could represent names, boolean literals,
comparisons or logical expressions. We have
already seen that in the first three cases,
better code is generated using the control-
flow approach. Now we see that for logical
expressions (at least for AndNodes) fewer
instructions are generated using the control-
flow approach than using the numeric
approach.

TEST YOURSELF #4

Compare the code generated by the two
approaches for an OrNode and for a NotNode.

solution

26 of 27

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/CODE-GEN-ANSWERS.html

Finally, let's compare the code generated by
the numeric and control-flow approaches for
an if-then statement. Here are outlines of the
two different versions of the code that would
be generated:

 Numeric Code Control-Flow Code
 ------------ -----------------

 -- code for condition, leaving -- code for condition,
 -- value on the stack -- including jumps to
 -- trueLab and falseLab
 pop into T0
 goto falseLab if T0 == FALSE trueLab:
 -- code for "then" stmts -- code for "then" stmts
 goto doneLab goto doneLab
falseLab: falseLab:
 -- code for "else" stmts -- code for "else" stmts
doneLab: doneLab:

Note that much of the code is the same for the
two methods; the code generated to evaluate
the condition will be different, and the
numeric method has three extra instructions:
a pop, followed by a conditional goto (those
instructions are shown in bold font). So as
long as the code generated for the condition is
no worse for the control-flow method than for
the numeric method, the control-flow method
is better (both in terms of the number of
instructions generated, and in terms of the
number of instructions that will be executed).

But we have already looked at the code
generated for all the different kinds of
conditions, for each of the two approaches,
and in fact the control-flow method was never
worse, and was sometimes better. Thus, the
control-flow method is the winner, in terms of
generating less and more efficient code!

27 of 27

• Overview
• Peephole Optimization
◦ Test Yourself #1

• Moving Loop-Invariant Computations
◦ Test Yourself #2

• Strength Reduction in for Loops
◦ Test Yourself #3
◦ Test Yourself #4

• Copy Propagation

Overview

The goal of optimization is to produce
better code (fewer instructions, and, more
importantly, code that runs faster).
However, it is important not to change the
behavior of the program (what it
computes)!

We will look at the following ways to
improve a program:

1. Peephole Optimization. This is done
after code generation. It involves
finding opportunities to improve the
generated code by making small, local
changes.

2. Moving Loop-Invariant
Computations. This is done before
code generation. It involves finding
computations inside loops that can be
moved outside, thus speeding up the
execution time of the loop.

3. Strength-Reduction in for Loops.
This is done before code generation. It
involves replacing multiplications
inside loops with additions. If it takes
longer to execute a multiplication than
an addition, then this speeds up the
code.

4. Copy Propagation. This is done
before code generation. It involves
replacing the use of a variable with a
literal or another variable. Copy
propagation can sometimes uncover
more opportunities for moving loop-
invariant computations. It may also
make it possible to remove some

1 of 18

https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#overview
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#peep
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#peep
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry1
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#dataflow
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#dataflow
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry2
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#strength%20red
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#strength%20red
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#strength%20red
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#strength%20red
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#strength%20red
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry3
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#youtry4
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#copy%20prop
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#copy%20prop

assignments from the program, thus
making the code smaller and faster.

Peephole Optimization

The idea behind peephole optimization is to
examine the code "through a small
window," looking for special cases that can
be improved. Below are some common
optimizations that can be performed this
way. Note that in all cases that involve
removing an instruction, it is assumed that
that instruction is not the target of a
branch.

1. Remove a redundant load (fewer
instructions generated, and fewer
executed):

after peephole
optimization

store Rx, M

load M, Rx
store Rx, M

2. Remove a redundant push/pop (fewer
instructions generated, and fewer
executed):

after peephole
optimization

push Rx

pop into Rx
nothing!

3. Replace a jump to a jump (same
number of instructions generated, but
fewer executed):

after peephole
optimization goto L1

L1: goto L2

...

 goto L2

L1: goto L2

...

4. Remove a jump to the next instruction
(fewer instructions generated, and
fewer executed):

after peephole
optimization

 goto L1

L1: ...
L1: ...

5. Replace a jump around jump (fewer

2 of 18

instructions generated; possibly fewer
executed):

after
peephole

optimization
 if T0 == 0 goto L1

 goto L2

L1: ...

 if T0 != 0 goto L2

L1: ...

6. Remove useless operations (fewer
instructions generated and fewer
executed):

after peephole
optimizationadd T0,T0, 0

mul T0,T0, 1

nothing!
(Adding 0 or multiplying

by 1 has no effect:
these instructions are useless)

7. Reduction in strength: don't use a
slow, general-purpose instruction
where a fast, special-purpose
instruction will do (same number of
instructions, but faster):

after peephole
optimization

mul, T0, T0, 2 shift-left T0

add, T0, T0, 1 inc T0

Note that doing one optimization may
enable another: for example:

load Tx, M

add Tx, 0

store Tx, M

load Tx, M

store Tx, M
load Tx, M

after
round 1

after
round 2

TEST YOURSELF #1

Consider the following program:

public class Opt {

 public static void main() {
 int a;
 int b;

 if (true) {
 if (true) {
 b = 0;
 }
 else {

3 of 18

 b = 1;
 }
 return;
 }
 a = 1;
 b = a;
 }
}

Question 1: The code generated for this
program contains opportunities for the first
two kinds of peephole optimization
(removing a redundant load, and replacing
a jump to a jump). Can you explain how
those opportunities arise just by looking at
the source code?

Question 2: Below is the generated code.
Verify your answer to question 1 by finding
the opportunities for the two kinds of
optimization. What other opportunity for
removing redundant code is common in this
example?

.text
.globl main

main: # FUNCTION ENTRY
sw $ra, 0($sp) #PUSH
subu $sp, $sp, 4
sw $fp, 0($sp) #PUSH
subu $sp, $sp, 4
addu $fp, $sp, 8
subu $sp, $sp, 8
STATEMENTS
if-then
li $t0, 1
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4
beq $t0, 0, _L0
if-then-else
li $t0, 1
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4
beq $t0, 0, _L1
li $t0, 0
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4
sw $t0, -12($fp)
b _L2

_L1:
li $t0, 1
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4

4 of 18

sw $t0, -12($fp)
_L2:

return
b main_Exit

_L0:
li $t0, 1
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4
sw $t0, -8($fp)
lw $t0, -8($fp)
sw $t0, 0($sp) #PUSH
subu $sp, $sp, 4
lw $t0, 4($sp) #POP
addu $sp, $sp, 4
sw $t0, -12($fp)

#FUNCTION EXIT
main_Exit:

lw $ra, 0($fp)
move $sp, $fp #restore SP
lw $fp, -4($fp) #restore FP
jr $ra #return

Optimization #1: Loop-
Invariant Code Motion

The ideas behind this optimization are:

◦ For greatest gain, optimize "hot spots"
i.e., inner loops.

◦ An expression is "loop invariant" if the
same value is computed for that
expression on every iteration of the
loop.

◦ Instead of computing the same value
over and over, compute the value once
outside the loop and reuse it.

Example:

for (i=0; i<100; i++) {
 for (j=0; j<100; j++) {
 for (k=0; k<100; k++) {
 A[i][j][k] = i*j*k
 }
 }
}

In this example, i*j is invariant with
respect to the inner loop. But there are
more loop-invariant expressions; to find
them, we need to look at a lower-level
version of this code. If we assume the
following:
◦ A is a 3D array

5 of 18

◦ each element requires 4 bytes
◦ elements are stored in the current

activation record in row-major order
(note: in Java, arrays are allocated from
the heap, not stored on the stack;
however, in other languages they may
be stored on the stack)

then the code for A[i][j][k] = ... involves
computing the address of A[i][j][k] (i.e.,
where to store the value of the right-
hand-side expression). That computation
looks something like:

address = FP - <offset of A> +
(i*10,000*4)+(j*100*4)+(k*4)

So the code for the inner loop is actually
something like:

T0 = i*j*k
T1 = FP - <offset of A> + i*40000 +
j*400 + k*4
Store T0, 0(T1)

And we have the following loop-invariant
expressions:

invariant to i loop: FP - <offset of A>
invariant to j loop: i*40000
invariant to k loop: i*j, j*400

We can move the computations of the loop-
invariant expressions out of their loops,
assigning the values of those expressions to
new temporaries, and then using the
temporaries in place of the expressions.
When we do that for the example above, we
get:

6 of 18

tmp0 = FP - offsetA

for (i=0; i<100; i++){

 tmp1 = tmp0 + i*40000

 for (j=0; j<100; j++){

 tmp2 = tmp1 + j*400

 temp = i*j

 for (k=0; k<100; k++){

 T0 = temp * k

 T1 = tmp2 + k*4

 store T0, 0(T1)

 }

 }

}

T0 is i*j*k

T1 is the
address of A

store i*j*k into
A[i][j][k]

Here is a comparison of the original code
and the optimized code (the number of
instructions performed in the innermost
loop, which is executed 1,000,000 times):

Original Code New Code

5 multiplications
(3 for lvalue, 2
for rvalue)

2 multiplications
(1 for lvalue, 1
for rvalue)

1 subtraction; 3
additions (for
lvalue)

1 addition (for
lvalue)

1 indexed store 1 indexed store

Questions:

1. How do we recognize loop-invariant
expressions?

2. When and where do we move the
computations of those expressions?

Answers:

1. An expression is invariant with respect
to a loop if for every operand, one of
the following holds:

a. It is a literal, or
b. It is a variable that gets its value

only from outside the loop.

2. To answer question 2, we need to

7 of 18

consider safety and profitability.

Safety

If evaluating the expression might cause an
error, then there is a possible problem if
the expression might not be executed in the
original, unoptimized code. For example:

b = a;

while (a != 0){

 x = 1/b;

 a--;

} possible divide by
zero if moved out

of the loop

What about preserving the order of events?
e.g. if the unoptimized code performed
output then had a runtime error, is it valid
for the optimized code to simply have a
runtime error? Also note that changing the
order of floating-point computations may
change the result, due to differing
precisions.

Profitability

If the computation might not execute in the
original program, moving the computation
might actually slow the program down!

Moving a computation is both safe and
profitable if one of the following holds:

1. It can be determined that the loop will
execute at least once and the code is
guaranteed to execute if the loop does:
• it isn't inside any condition, or
• it is on all paths through the loop

(e.g., it occurs in both branches of
an if-then-else).

2. The expression is in (a non short-
circuited) part of the loop test / loop
bounds, e.g.:
while (x < i + j * 100) //

j*100 will always be evaluated

8 of 18

TEST YOURSELF #2

What are some examples of loops for which
the compiler can be sure that the loop will
execute at least once?

solution

Optimization #2: Strength
reduction in for-loops

The basic idea here is to take advantage of
patterns in for-loops to replace expensive
operations, like multiplications, with
cheaper ones, like additions.

The particular pattern that we will handle
takes the general form of a loop where:

1. L is the loop index

2. B is the beginning value of the loop

3. E is the end value of the loop

4. The body of the loop contains a right-
hand-side expression of the form L * M

+ C. We call this the induction

expression.
5. The factors of the induction

expression, M and C, must be constant

with respect to the loop.

These rules define a sort-of "template" of

the following form* :

for L from B to E do {

 = L * M + C

}

Consider the sequences of values for L and

for the induction expression:

Iteration
#

L L * M + C

1 B B * M + C

⋮

…

⋮

9 of 18

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans2
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#

2
B +
1

(B + 1) * M +
C = B * M + M
+ C

3
B +
1 +
1

(B + 1 + 1) *
M + C = B * M
+ M + M + C

Note that in each case, the part of the
induction expression highlighted in orange
is the same as the value of the whole
expression on the previous iteration, and
the non-highlighted part each time is
always + M. In other words, each time

around the loop, the induction expression
increases by adding M, a constant value! So

we can avoid doing the multiplication each
time around the loop by:

• computing B * M + C once before the

loop,
• storing that value in a temporary,
• using the temporary instead of the

expression inside the loop, and
• incrementing the temporary by M at the

end of the loop.

Here is the transformed loop:

ind = B * M + C //Initialize temp

to first value of expression

for L from B to E do {

 = ind //Use ind instead of

recalculating expression

 ind = ind + M //Increment ind at

the end of the loop by M

}

Note that instead of doing a
multiplication and an addition each time
around the loop, we now do just one
addition each time. Although in this
example we've removed a multiplication,
in general we are replacing a
multiplication with an addition (that is
why this optimization is called reduction
in strength). Although this pattern may

⋮

…

⋮

10 of 18

tmp0 = FP - offsetA

for (i=0; i<100; i++){

 tmp1 = tmp0 + i * 40000

 for (j=0; j<100; j++){

 tmp2 = tmp1 + j*400

 temp = i*j

 for (k=0; k<100; k++){

 T0 = temp * k

 T1 = tmp2 + k*4

 store T0, 0(T1)

 }

 }

}

#1

#2#3

#4

#5

seem restrictive, in practice many loops
fit into this template, especially since we
allow M or C to be absent. In particular, if

there were no C, the original induction

expression would be: L * M, and that

would be replaced inside the loop by: ind

= ind + M; an addition replaces a

multiplication.

TEST YOURSELF #3

Some languages actually have for-loops
with the syntax used above (for i from

low to high do ...), but other

languages (including Java) do not use that
syntax. Must a Java compiler give up on
performing this optimization, or might it
be able to recognize opportunities in
some cases?

solution

As mentioned above, many loops
naturally fit the template for strength
reduction that we defined above. Now
let's see how to apply this optimization to
the example code we used to illustrate
moving loop-invariant computations out
of the loop. Below is the code we had
after moving the loop-invariant
computations. Each induction expression
is circled and identified by a number:

11 of 18

https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans3
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans3

Original
Expression

Loop
Index
(L)

Multiply
Term
(M)

Addition
Term
(C)

#1: tmp0 +
i * 40000

i 40000 tmp0

#2: tmp1 +
j * 400

j 400 tmp1

#3: i * j j i 0

#4: temp *
k

k temp 0

#5: tmp2 +
k * 4

k 4 tmp2

After performing the reduction in
strength optimizations:

tmp0 = FP - offsetA

ind1 = tmp0

for (i=0; i<100; i++){

 tmp1 = ind1

 ind2 = tmp1

 ind3 = 0

 for (j=0; j<100; j++){

 tmp2 = ind2

 temp = ind3

 ind4 = 0

 ind5 = tmp2

 for (k=0; k<100; k++){

 T0 = ind4

 T1 = ind5

 store T0, 0(T1)

 ind4 = ind4 + temp

 ind5 = ind5 + 4

 }

 ind2 = ind2 + 400

 ind3 = ind3 + i

 }

 ind1 = ind1 + 40000

}

ind1 = 0*40000+tmp0

ind2 = 0*400+tmp1

ind3 = 0*i+0

ind4 = 0*temp+0

ind5 = 0*4+tmp2

In the original code, the innermost loop
(executed 1,000,000 times) had two
multiplications and one subtraction. In
the optimized code, the inner loop has no
multiplications, one subtraction, and one

12 of 18

addition. (Similarly, the middle loop went
from two multiplications and one
subtraction to no multiplications, one
subtraction, and one addition; the outer
loop went from one multiplication and
one subtraction to no multiplications and
one subtraction.) On the other hand, we
have added a number of assignments; for
example, the inner loop had just two
assignments, and now it has four. We'll
deal with that in the next section using
copy propagation

TEST YOURSELF #4

Suppose that the index variable is
incremented by something other than one
each time around the loop. For example,
consider a loop of the form:

for (i=low; i<=high; i+=2) ...

Can strength reduction still be
performed? If yes, what changes must be
made to the proposed algorithm?

solution

Optimization #3: Copy
propagation

Statements of the form x = y (call this

definition) are called copy statements.

For every use of variable x reached by

definition such that:

1. no other definition of x reaches ,

and

2. y can't change between and

we can replace the use of x at with a

use of y.

Examples:

d

u

d

u

d u

u

13 of 18

https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#copy%20prop
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#copy%20prop
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans4
https://pages.cs.wisc.edu/~hasti/cs536/readings/SOLUTIONS/OPTIMIZATION-ANSWERS.html#ans4

x can be
replaced
with y

x = y

a = x+z

x cannot be
replaced with
y; violates
condition 1

x = y

if (...) x = 2

a = x+z

x cannot be
replaced with y;

violates condition 2

x = y

if (...) y = 3

a = x+z

Question: Why is this a useful
transformation?

Answers:

◦ If all uses of x reached by are

replaced, then definition is useless,

and can be removed.

◦ Even if the definition cannot be
removed, copy propagation can lead to
improved code:

1. If the definition is actually of the
form: x = literal, then copy

propagation can create
opportunities for better code:

after copy
propagation

x = 5;

a = b + x;

x = 5;

a = b + 5;
For a machine like the MIPS, there
are fast instructions that can be
used when one of the operands is
an "immediate" (literal) value.
These instructions can be used for
operation a = b + 5, since one of

the operands is a literal, but not
for a = b + x. The improvemnt is

even more striking because MIPS
doesn't allow arithmetic operands
to be memory locations, so to
generate assembly for statements
like a = b + x, it would be

necessary to load the values for
both b and x into registers, which

would require additional load

instructions*

Furthermore, this kind of copy

d

d

14 of 18

https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#
https://pages.cs.wisc.edu/~hasti/cs536/readings/optimization.html#

propagation can lead to
opportunities for constant folding:
evaluating, at compile time, an
expression that involves only
literals. For example:

2. Sometimes copy propagation can
be combined with moving loop-
invariant computations out of the
loop, to lead to a better overall
optimization. For example:

 while (...) {
 x = a * b; // loop-inv
 y = x * c;
 ...
 }

Move "a * b" out of the loop:

 tmp1 = a * b;
 while (...) {
 x = tmp1;
 y = x * c;
 ...
 }

Note that at this point, even if c is

not modified in the loop, we cannot
move "x * c" out of the loop,

because x gets its value inside the

loop. However, after we do copy
propagation:

 tmp1 = a * b;
 while (...) {
 x = tmp1;
 y = tmp1 * c;
 ...
 }

"tmp1 * c" can also be moved out

of the loop:

 tmp1 = a * b;
 tmp2 = tmp1 * c;
 while (...) {
 x = tmp1;
 y = tmp2;
 ...
 }

Given a definition d that is a copy

statement: x = y, and a use of x, weu

15 of 18

must determine whether the two
important properties hold that permit the
use of x to be replaced with y.

The first property (use is reached only

by definition) is best solved using the

standard "reaching-definitions" dataflow-
analysis problem, which computes, for
each definition of a variable x, all of the

uses of x that might be reached by that

definition. Note that this property can
also be determined by doing a backward
depth-first or breadth-first search in the

control-flow graph, starting at use , and

terminating a branch of the search when
a definition of x is reached. If definition d

is the only definition encountered in the
search, then it is the only one that

reaches use . (This technique will, in

general, be less efficient than doing
reaching-definitions analysis.)

The second property (that variable y

cannot change its value between

definition d and use), can also be

verified using dataflow analysis, or using
a backwards search in the control-flow

graph starting at , and quitting at . If

no definition of y is encountered during

the search, then its value cannot change,
and the copy propagation can be
performed. Note that when y is a literal,

property (2) is always satisfied.

Below is our running example (after
doing reduction in strength). Each copy
statements either has a red X next to it (if
it can't be propagated) or a green check
(if it can be propagated). In this
particular example, each variable x that is
defined in a copy statement reaches only
one use. Comments indicate which of
them cannot be propagated (because of a
violation of property (1) -- in this example
there are no instances where property (2)
is violated).

u

d

u

u

u

u d

16 of 18

tmp0 = FP - offsetA

ind1 = tmp0

for (i=0; i<100; i++){

 tmp1 = ind1

 ind2 = tmp1

 ind3 = 0

 for (j=0; j<100; j++){

 tmp2 = ind2

 temp = ind3

 ind4 = 0

 ind5 = tmp2

 for (k=0; k<100; k++){

 T0 = ind4

 T1 = ind5

 store T0, 0(T1)

 ind4 = ind4 + temp

 ind5 = ind5 + 4

 }

 ind2 = ind2 + 400

 ind3 = ind3 + i

 }

 ind1 = ind1 + 40000

}

ind5 updated
in k-loop

ind4 updated
in k-loop

ind2 updated
in j-loop

ind1 updated
in i-loop

ind3 updated
in j-loop

Here's the code after propagating the
copies that are legal, and removing the
copy statements that become dead. Note
that we are able to remove 5 copy
statements, including 2 from the
innermost loop.

17 of 18

tmp0 = FP - offsetA

ind1 = tmp0

for (i=0; i<100; i++){

 ind2 = ind1

 ind3 = 0

 for (j=0; j<100; j++){

 ind4 = 0

 ind5 = ind2

 for (k=0; k<100; k++){

 store ind4, 0(ind5)

 ind4 = ind4 + ind3

 ind5 = ind5 + 4

 }

 ind2 = ind2 + 400

 ind3 = ind3 + i

 }

 ind1 = ind1 + 40000

}

propagated
through tmp1

propagated
through tmp2

propagated
through T1

propagated
through T0

propagated
through temp

Comparing this code with the original
code, we see that, in the inner loop
(which is executed 1,000,000 times) we
originally had 5 multiplications, 3
additions/subtractions, and 1 indexed
store. We now have no multiplications
and just 2 additions/subtractions. We
have added 2 additions/subtractions and
2 copy statements to the middle loop
(which executes 10,000 times) and 1
addition/subtraction and 1 copy
statement to the outer loop (which
executes 100 times), but overall this
should be a win!

18 of 18

