Static Single-Assignment Form and Dataflow Analysis
Roadmap

Last time:
- Optimization overview
 • Soundness and completeness
- Simple optimizations
 • Peephole
 • LICM

This time:
- Data structures (and data) used to determine when it is safe (i.e., sound) to perform an optimizing transformation
 • Review dominators
 • SSA form
 • Dataflow analysis
DOMINATOR REVIEW
Dominator terms

Domination (A dominates B):
– to reach block B, you must have gone through block A

Strict Domination (A strictly dominates B)
– A dominates B and A is not B

Immediate Domination (A immediately dominates B)
– A immediately dominates B if A dominates B and has no intervening dominators
Dominator Example
Dominance Frontier

Definition: For a block X, the set of nodes Y such that X dominates an immediate predecessor of Y but does not strictly dominate Y
STATIC SINGLE ASSIGNMENT FORM (SSA FORM)
Goal of SSA Form

Build an intermediate representation of the program in which each variable is assigned a value in at most 1 program point:

<table>
<thead>
<tr>
<th>Valid</th>
<th>Invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- x = 1
- z = 2
- y = 3
- x = y
- z = y
- w = z
- x = 1
- i = 0;
- while(i < 10){
 k = i + 1;
}

Statically: There is at most one assignment statement that assigns to k

Dynamically: k can be assigned to multiple times
Conversion

We make new variables to carry over the effect of the original program

\[
x = 1 \\
x = x \\
y = x
\]

\[
x_1 = 1 \\
x_2 = x_1 \\
y_1 = x_2
\]
Benefits of SSA Form

There are some obvious advantages to this format for program analysis:

- Easy to see the live range of a given variable x assigned to in statement s:
 - The region from "$x = \ldots;$" until the last use(s) of x before x is redefined.
 - In SSA form, from "$x_i = \ldots;\) to all uses of x_i, e.g., "$\ldots = f(\ldots, x_i, \ldots);$".

- Easy to see when an assignment is useless:
 - We have "$x_i = \ldots;$" and there are no uses of x_i in any expression or assignment RHS.
 - ""$x_i = \ldots;$’ is a useless assignment’
 - ""$x_i = \ldots;$’ is dead code’

In other words, some useful information is pre-computed, or at least easily recoverable from SSA form.

Warning 1: Dead code = useless assignments + unreachable code

Warning 2: There is another concept called “live variables.”

- When variable x is “not live,” a convenient shorthand is “Variable x is dead.”
- When x is dead just after a statement s, that does not imply that s is dead code. (E.g., suppose s assigns to y.)
- When s is a useless assignment to x
 - Statement s is dead code (because dead = useless or unreachable).
 - x is not live just after s (”Variable x is dead just after s”)
 - Because variable x is dead, s is a useless assignment, and thus statement s is dead code.

Warning 2: There is another concept called “live variables.”

- When variable x is “not live,” a convenient shorthand is “Variable x is dead.”
- When x is dead just after a statement s, that does not imply that s is dead code. (E.g., suppose s assigns to y.)
- When s is a useless assignment to x
 - Statement s is dead code (because dead = useless or unreachable).
 - x is not live just after s (”Variable x is dead just after s”)
 - Because variable x is dead, s is a useless assignment, and thus statement s is dead code.
Optimizations Where SSA Helps

Dead-Code Elimination

At “if (b < 4)”, b is only reached by “b = 2;” Therefore, the else branch is unreachable (dead), and can be removed.

```c
int a = 9;
int b = 2;
if (g < 12){
a = 1;
} else {
if (b < 4){
a = 2;
} else {
    a = 3;
}
}

b = a;
return 2;
```
Optimizations Where SSA Helps

Constant-propagation/constant-folding

```c
int a = 30;
int b = 3; // (a / 5);
int c;
c = b * 4;
if (c > 10) {
c = c - 10;
}
return c * (60 / a);
```
What About Conditionals?

Which y to use?
Phi Functions (ϕ)

- We introduce a special symbol Φ at such points of confluence
- Φ’s arguments are all the instances of variable y that might be the most recently assigned variant of y
- Returns the “correct” one
- Do we need a Φ for x?
 - No!
Computing Phi-Function Placement

Intuitively, we want to figure out cases where there are multiple assignments that can reach a node. To be safe, we can place a Φ function for each assignment at every node in the \textit{dominance frontier}.
Pruned Phi Functions

This criterion causes a bunch of useless Φ functions to be inserted
– Cases where the result is never used “downstream” (useless)

Pruned SSA is a version where useless Φ nodes are suppressed
Other Advantages of SSA Form

Flow dependences
4×4 edges
Other Benefits of SSA Form

\[x_1 = \ldots \]
\[x_2 = \ldots \]
\[x_3 = \ldots \]
\[x_4 = \ldots \]

\[x_5 = \phi(x_1, x_2, x_3, x_4) \]

\[v = 3x_5 \]
\[w = x_5 \]
\[y = 7x_5 \]
\[z = w \times x_5 \]

Multiplicative representation → Additive representation

4 × 4 edges → 4 + 4 edges
DATAFLOW ANALYSIS
Dataflow-Analysis Example 1

Reaching definitions

Before p1: ∅
After p1: {<p1, x>}

Before p2: {<p1, x>, ...}
After p2: {<p2, x>, ...}

Before p3: {<p2, x>, ...}
After p3: {<p2, x>, <p3, y>, ...}

Note: for expository purposes, it is convenient to assume we have a statement-level CFG rather than a basic-block-level CFG.

Transfer function:
\[\lambda S. (S - \{<p_i, x>\}) \cup \{<p_2, x>\} \]

Data: sets of <program-point, variable> pairs
Dataflow-Analysis Example 1

Reaching definitions

Before p1: \(\emptyset \)
After p1: \{<p1, x>\}

Before p2: \{<p1, x>, \ldots\}
After p2: \{<p2, x>, \ldots\}

Before p3: \{<p2, x>, <p4, x>, \ldots\}
After p3: \{<p2, x>, <p3, y>, <p4, x>, \ldots\}

Meet operation: Union of sets (of <program-point, variable> pairs)

Before p4: \(\emptyset \)
After p4: \{<p4, x>\}

p1: \(x = 1; \)
\[\ldots \]
p2: \(x = 2; \)
\[\ldots \]
p3: \(y = x; \)
p4: \(x = 7; \)

Note: for expository purposes, it is convenient to assume we have a statement-level CFG rather than a basic-block-level CFG.
Dataflow-Analysis Example 1

Reaching definitions: Why is it useful?
Answers the question “Where could this variable have been defined?”

Before p1: ∅
After p1: {<p1, x>}

Before p2: {<p1, x>, ...}
After p2: {<p2, x>, ...}

Before p3: {<p2, x>, <p4, x> ...}
After p3: {<p2, x>, <p3, y>, <p4, x>, ...}

p1: x = 1;

... p2: x = 2;

Before p4: ∅
After p4: {<p4, x>
Dataflow-Analysis Example 2

Live Variables

Before p1: \emptyset
After p1: $\{x\}$

Before p2: $\{x\}$
After p2: $\{x, y\}$

Before p3: $\{x, y\}$
After p3: \emptyset

Before p4: \emptyset
After p4: $\{x\}$

Before p5: $\{x\}$
After p5: $\{x\}$

Before p6: $\{x\}$
After p6: \emptyset

Transfer function:
$\lambda S. (S - \{z\}) \cup \{x, y\}$

p1: $x = 1$;
if (...) {
 p2: $y = 0$;
 p3: $z = x + y$;
}

p4: $x = 2$;
p5: $z = 3$;
p6: cout $\ll x$;

Data: sets of variables

z is not live after p5, and thus p5 is a useless assignment (= dead code)
There are some obvious advantages to this format for program analysis:
- Easy to see the live range of a given variable \(x \) assigned to in statement \(s \)
 - The region from “\(x = \ldots; \)” until the last use(s) of \(x \) before \(x \) is redefined
 - In SSA form, from “\(x_i = \ldots; \)” to all uses of \(x_i \), e.g., “\(\ldots = f(\ldots, x_i, \ldots); \)”
- Easy to see when an assignment is useless
 - We have “\(x_i = \ldots; \)” and there are no uses of \(x_i \) in any expression or assignment RHS
 - “\(x_i = \ldots; \)” is a useless assignment
 - “\(x_i = \ldots; \)” is dead code

In other words, some useful information is pre-computed, or at least easily recoverable from SSA form.

Warning 1: Dead code = useless assignments + unreachable code

Warning 2: There is another concept called “live variables.”
- When variable \(x \) is “not live,” a convenient shorthand is “Variable \(x \) is dead.”
- When \(x \) is dead just after a statement \(s \), that does not imply that \(s \) is dead code. (E.g., suppose \(s \) assigns to \(y \).)
- When \(s \) is a useless assignment to \(x \)
 - Statement \(s \) is dead code (because dead = useless or unreachable)
 - \(x \) is not live just after \(s \) (“Variable \(x \) is dead just after \(s \)”)
 - Because variable \(x \) is dead, \(s \) is a useless assignment, and thus statement \(s \) is dead code.

Warning 2: There is another concept called “live variables.”
- When variable \(x \) is “not live,” a convenient shorthand is “Variable \(x \) is dead.”
- When \(x \) is dead just after a statement \(s \), that does not imply that \(s \) is dead code. (E.g., suppose \(s \) assigns to \(y \).)
- When \(s \) is a useless assignment to \(x \)
 - Statement \(s \) is dead code (because dead = useless or unreachable)
 - \(x \) is not live just after \(s \) (“Variable \(x \) is dead just after \(s \)”)
 - Because variable \(x \) is dead, \(s \) is a useless assignment, and thus statement \(s \) is dead code.

Warning 1: Dead code = useless assignments + unreachable code