Dataflow Analysis and Dataflow-Analysis Frameworks
Roadmap

Last time:
– Data structures (and data) used to determine when it is safe (i.e., sound) to perform an optimizing transformation
 • Review dominators
 • SSA form
 • Dataflow analysis

This time:
– More dataflow analysis
 • Dataflow equations
 • Solving dataflow equations
– Dataflow-analysis frameworks
Dataflow-Analysis Example 1

Reaching definitions

Before p_1: \emptyset
After p_1: $\{<p_1, x>\}$

p_1: $x = 1$

...

Before p_2: $\{<p_1, x>, ...\}$
After p_2: $\{<p_2, x>, ...\}$

p_2: $x = 2$

...

Before p_3: $\{<p_2, x>, ...\}$
After p_3: $\{<p_2, x>, <p_3, y>, ...\}$

p_3: $y = x$

Transfer function: \[\lambda S. (S - \{< p_i, x >\}) \cup \{< p_2, x >\}\]

Data: sets of $<\text{program-point, variable}>$ pairs

Note: for expository purposes, it is convenient to assume we have a statement-level CFG rather than a basic-block-level CFG.
Dataflow-Analysis Example 1

Reaching definitions

Before p1: \(\emptyset\)
After p1: \(\{<p1, x>\}\)

Before p2: \(\{<p1, x>, ...\}\)
After p2: \(\{<p2, x>, ...\}\)

Before p3: \(\{<p2, x>, <p4, x>, ...\}\)
After p3: \(\{<p2, x>, <p3, y>, <p4, x>, ...\}\)

Meet operation: Union of sets (of <program-point, variable> pairs)

\(p1: x = 1;\)
\[
\vdots
\]
\(p2: x = 2;\)
\[
\vdots
\]
\(p3: y = x;\)
\(p4: x = 7;\)

Before p4: \(\emptyset\)
After p4: \(\{<p4, x>\}\)
Dataflow-Analysis Example 1

Reaching definitions: Why is it useful?
Answers the question “Where could this variable have been defined?”

Before p1: Ø
After p1: {<p1, x>}

p1: x = 1;

...

Before p2: {<p1, x>, ...}
After p2: {<p2, x>, ...}

Before p3: {<p2, x>, <p4, x> ...}
After p3: {<p2, x>, <p3, y>, <p4, x>, ...}

Before p4: Ø
After p4: {<p4, x>}

p2: x = 2;

...

p3: y = x;

p4: x = 7;
Dataflow-Analysis Example 2

Live Variables

Before p1: \emptyset
After p1: $\{x\}$

Before p2: $\{x\}$
After p2: $\{x, y\}$

Before p3: $\{x, y\}$
After p3: \emptyset

Before p4: \emptyset
After p4: $\{x\}$

Before p5: $\{x\}$
After p5: $\{x\}$

Before p6: $\{x\}$
After p6: \emptyset

Transfer function:

$\lambda S. (S - \{z\}) \cup \{x, y\}$

Data: sets of variables

z is not live after p5, and thus p5 is a useless assignment (= dead code)

Dataflow Analysis Example 2

Live Variables

Before p1: \emptyset
After p1: $\{x\}$

Before p2: $\{x\}$
After p2: $\{x, y\}$

Before p3: $\{x, y\}$
After p3: \emptyset

Before p4: \emptyset
After p4: $\{x\}$

Before p5: $\{x\}$
After p5: $\{x\}$

Before p6: $\{x\}$
After p6: \emptyset

Transfer function:

$\lambda S. (S - \{z\}) \cup \{x, y\}$

Data: sets of variables

z is not live after p5, and thus p5 is a useless assignment (= dead code)
Dataflow-Analysis Direction

Forward analysis
– Start at the beginning of a function’s CFG, work along the control edges (e.g., reaching definitions)

Backward analysis
– Start at the end of a function’s CFG, work against the control edges (e.g., live variables)
There are some obvious advantages to this format for program analysis:

- **Easy to see the live range of a given variable** \(x \) assigned to in statement \(s \):
 - The region from "\(x = \ldots; \)" until the last use(s) of \(x \) before \(x \) is redefined
 - In SSA form, from "\(x_i = \ldots; \)" to all uses of \(x_i \), e.g., "\(\ldots = f(\ldots, x_i, \ldots); \)"

- **Easy to see when an assignment is useless**
 - We have "\(x_i = \ldots; \)" and there are no uses of \(x_i \) in any expression or assignment RHS
 - "\(x_i = \ldots; \)" is a useless assignment
 - "\(x_i = \ldots; \)" is dead code

In other words, some useful information is pre-computed, or at least easily recoverable from SSA form.

Warning 1: Dead code = useless assignments + unreachable code

Warning 2: There is another concept called “live variables.”
- When variable \(x \) is “not live,” a convenient shorthand is “Variable \(x \) is dead.”
- When \(x \) is dead just after a statement \(s \), that does not imply that \(s \) is dead code. (E.g., suppose \(s \) assigns to \(y \).)
- When \(s \) is a useless assignment to \(x \)
 - Statement \(s \) is dead code (because dead = useless or unreachable)
 - \(x \) is not live just after \(s \) (“Variable \(x \) is dead just after \(s \)”)
 - Because variable \(x \) is dead, \(s \) is a useless assignment, and thus statement \(s \) is dead code.
Dataflow-Analysis Example 3

Reachable uses

Before p1: {...}
After p1: {<p3, z>, <p2, z>, ...}
p1: z = 1;
 ...

Before p2: {<p3, z>, <p2, z>, ...}
After p2: {<p3, x>, <p3, z>, ...}
p2: x = z;

Before p3: {<p3, x>, <p3, z>}
After p3: ∅
p3: y = x+z;

Transfer function:
\[\lambda S. (S - \{< p_1, x >\}) \cup \{< p_2, z >\} \]

Data: sets of <program-point, variable> pairs
Dataflow-Analysis Example 3

Reachable uses

Before p1: \{<p3, z>, <p2, z>, <p4, z>, \ldots\}
After p1: \{<p3, z>, <p2, z>, <p4, z>, \ldots\}

Before p2: \{<p3, z>, <p2, z>, \ldots\}
After p2: \{<p3, x>, <p3, z>, \ldots\}

Before p3: \{<p3, x>, <p3, z>\}
After p3: \emptyset

p1: if (…) …

p2: x = z; …

p3: y = x+z;

p4: x = 3*z; Before p4: \{<p3, z>, <p4, z>\}
After p4: \{<p3, x>, <p3, z>\}

Meet operation: Union of sets (of \(<program-point, variable>\) pairs)
Dataflow-Analysis Example 3

 reachable uses: Why is it useful?

 Answers the question “What could this variable definition reach?”

 After p0: \(<p3, z>, <p2, z>, <p4, z>, \ldots\> \]

 Before p1: \(<p3, z>, <p2, z>, <p4, z>, \ldots\> \]

 After p1: \(<p3, z>, <p2, z>, <p4, z>, \ldots\> \]

 Before p2: \(<p3, z>, <p2, z>, \ldots\> \]

 After p2: \(<p3, x>, <p3, z>, \ldots\> \]

 Before p3: \(<p3, x>, <p3, z>\> \]

 After p3: \(\emptyset\)
Dataflow-Analysis Example 3

Reachable uses: Why is it useful?

Answers the question “What could this variable definition reach?”

Before p0: \{<p3, z>, <p2, z>, <p4, z>, ...\}
After p0: \{<p3, z>, <p2, z>, <p4, z>, ...\}

Before p1: \{<p3, z>, <p2, z>, <p4, z>, ...\}
After p1: \{<p3, z>, <p2, z>, <p4, z>, ...\}

Before p2: \{<p3, z>, <p2, z>, ...\}
After p2: \{<p3, x>, <p3, z>, ...\}

Before p3: \{<p3, x>, <p3, z>\}
After p3: \emptyset

Reachable uses: really just an indexing question. At which end of the edges do you want to collect the information?
Obtaining a Dataflow-Analysis Solution

Successive approximation:

– Assign to each node in the CFG a (dataflow-problem-specific) default value
 • Typically either \emptyset or the universe of the sets you are working with, e.g., {all variables in the procedure}
– Assign a special value to the entry node
– Propagate values until quiescence, as follows:
 Repeatedly
 • Pick a node
 • Find input values from predecessors
 • Apply transfer function
 Until no change is possible
Example: Reaching Definitions

Before p1: ∅
After p1: ∅

Before p2: ∅
After p2: {<p2,min>}

Before p3: {<p2,min>}
After p3: {<p2,min>, <p3,x>}

Before p4: {<p2,min>, <p3,x>}
After p4: {<p2,min>, <p3,x>}

Before p5: {<p2,min>, <p3,x>}
After p5: {<p2,min>, <p3,x>}

Before p6: {<p2,min>, <p3,x>}
After p6: {<p6,min>, <p3,x>}

Before p7: {<p2,min>, <p6,min>, <p3,x>}
After p7: {<p2,min>, <p6,min>, <p7,x>}
Example: Reaching Definitions

Before p1: ∅
After p1: ∅

Before p2: ∅
After p2: {<p2, min>}

Before p3: {<p2, min>}
After p3: {<p2, min>, <p3, x>}

Before p4: {<p2, min>, <p3, x>}
After p4: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

Before p5: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}
After p5: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

Before p6: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}
After p6: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

Before p7: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}
After p7: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

Before p8: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}
After p8: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

Before p9: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}
After p9: {<p2, min>, <p3, x>, <p6, min>, <p7, x>}

1: start
2: min = +∞
3: read(x)
4: while x>0
5: if x<min
6: min = x
7: read(x)
8: write(min)
9: end
Obtaining a Dataflow-Analysis Solution by Successive Approximation

for all nodes n, $\text{RdBefore}[n] := \emptyset$ and $\text{RdAfter}[n] := \emptyset$
workset := \{ start\}
while (workset \neq \emptyset) {
 select and remove a node n from workset
 oldValueAfter := $\text{RdAfter}[n]$
 $\text{RdBefore}[n] := \bigcup_{<p,n> \in Edges} \text{RdAfter}[p]$
 $\text{RdAfter}[n] := F_n(\text{RdBefore}[n])$
 if oldValueAfter \neq $\text{RdAfter}[n]$ then
 for all $<n,w> \in Edges$, insert w into workset
}
Successive Approximation!? Does That Always Work?

To find a solution $x^* = F(x^*)$, perform $x_{k+1} = F(x_k)$

Let’s try: $x^2 = 2$, using $x = \frac{2}{x}$

Iterate on $x_{k+1} = \frac{2}{x_k}$

Pick any $x_0 \neq 0$,

$x_1 = \frac{2}{x_0}, x_2 = x_0, x_3 = \frac{2}{x_0}, x_4 = x_0$, failure 😞
Successive Approximation!? Does That Always Work?

To find a solution \(x^* = F(x^*) \), perform \(x_{k+1} = F(x_k) \)

\[x^2 = 2, \text{ so } x = \frac{2}{x} \]

Add \(x \) to both sides: \(x + x = x + \frac{2}{x} \) That is, \(2x = x + \frac{2}{x} \)

Iterate on \(x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right) \)

\[
\begin{align*}
 x_0 & = 1.00000 \\
 x_1 & = 1.50000 \\
 x_2 & = 1.41666 \\
 x_3 & = 1.41421 \\
 x_4 & = 1.41421
\end{align*}
\]
Iterative method converges

Iterative method diverges

Theorem 2.1 Let \(g(x) \) be an iteration function satisfying Assumptions 2.1 and 2.3. Then \(g(x) \) has exactly one fixed point \(\xi \) in \(I \), and starting with any point \(x_0 \) in \(I \), the sequence \(x_1, x_2, \ldots \) generated by fixed-point iteration of Algorithm 2.6 converges to \(\xi \).

To prove this theorem, recall that we have already proved the existence of a fixed point \(\xi \) for \(g(x) \) in \(I \). Now let \(x_0 \) be any point in \(I \). Then, as we remarked earlier, fixed-point iteration generates a sequence \(x_1, x_2, \ldots \) of points all lying in \(I \), by Assumption 2.1. Denote the error in the \(n \)th iterate by

\[
e_n = \xi - x_n \quad n = 0, 1, 2, \ldots
\]

Then since \(\xi = g(\xi) \) and \(x_n = g(x_{n-1}) \), we have

\[
e_n = \xi - x_n - g(\xi) = g(x_{n-1}) - g(x_n) - g'(x_n)\epsilon_{n-1}
\]

(2.19)
Successive Approximation!?
Does That Always Work?

To find a solution $x^* = F(x^*)$, perform $x_{k+1} = F(x_k)$

- Fact: For reaching definitions and live variables, successive approximation always works
- Why?
 - (An approximation to) an answer is two sets per program point
 - The sets at each program point are finite and of a priori bounded size
 - Each sets always increases in size (\subseteq)
 - Approximations to answers get bigger and bigger, but cannot grow without bound
 - Therefore the algorithm must terminate
 - When the algorithm terminates, the sets solve the equations
Equations? What Equations?

Two equations for each node n:

\[
\begin{align*}
RdBefore[n] &= \bigcup_{<p,n>\in Edges} RdAfter[p] \\
RdAfter[n] &= F_n(RdBefore[n])
\end{align*}
\]

Successive approximation:

\[
\begin{align*}
RdBefore_{k+1}[n] &= \bigcup_{<p,n>\in Edges} RdAfter_k[p] \\
RdAfter_{k+1}[n] &= F_n(RdBefore_k[n])
\end{align*}
\]

In iterative algorithm:

\[
\begin{align*}
RdBefore[n] &:= \bigcup_{<p,n>\in Edges} RdAfter[p] \\
RdAfter[n] &:= F_n(RdBefore[n])
\end{align*}
\]
Equations: What Equations?

Equations:
\[x = 3y + 4z \]
\[y = 2w + 2 \]
\[z = 7w - x \]
\[w = 17 \]
DATAFLOW-ANALYSIS FRAMEWORKS
What is a Dataflow Framework?

Many analyses can be formulated in terms of how data is transformed over the control flow graph

– Propagate information from:
 • After (before) some node, to
 • Before (after) some other node

– Put information together when control flow merges (or diverges)

A framework captures these uniformities

– In object-oriented-program terms: like an abstract class AC

– To use the framework
 • You define certain data and methods (required by AC)
 • AC supplies other methods (already implemented, so you don’t have to worry about implementing them yourself)
Dataflow Framework: What You Supply

The type of data (a.k.a. dataflow facts)
– A collection of values with an order, such as \(\subseteq \)
– (Sometimes called a “meet semi-lattice”)
– Default value and value to use at entry (or exit)

Transfer functions
– Specify how data is propagated across a node

A meet operation (\(\sqcap \))
– The operation for combining values that come across multiple edges

Direction (forward or backward)
Dataflow Framework Instantiated for Reaching-Definitions Analysis

The type of data (a.k.a. dataflow facts):

Sets of <program-point, variable> pairs

Transfer functions:

For “p: id = exp;” and “p: read id”
\[\lambda S. (S - \{< p_i, id >\}) \cup \{< p, id >\} \]

For “if exp ...” and “write exp
\[\lambda S. S \]

The meet operation (for combining values that come across multiple edges):

Set union (\(\cup \))

Direction:

Forward
Dataflow Framework Instantiated for Live-Variable Analysis

The type of data (a.k.a. dataflow facts):

Sets of variables

Transfer functions:

For “id = exp;”
\[\lambda S. (S - \{id\}) \cup \{x \in exp\} \]

For “if exp”, and “write exp”
\[\lambda S. S \cup \{x \in exp\} \]

For “read id”
\[\lambda S. (S - \{id\}) \]

The meet operation (for combining values that come across multiple edges):

Set union (\(\cup\))

Direction:

Backward
Obtaining a Dataflow-Analysis Solution by Successive Approximation

for all nodes n, ValBefore[n] := \text{T} and ValAfter[n] := \text{T}
workset := \{\text{start}\}
while (workset \neq \emptyset) {
 select and remove a node n from workset
 oldValueAfter := ValAfter[n]
 ValBefore[n] := \prod_{<p,n> \in Edges} ValAfter[p]
 ValAfter[n] := F_n(ValBefore[n])
 if oldValueAfter \neq ValAfter[n] then
 for all <n, w> \in Edges, insert w into workset
}
Obtaining a Dataflow-Analysis Solution by Successive Approximation

for all nodes n, $ValAfter[n] := T$ and $ValBefore[n] := T$

workset := \{ end\}

while (workset $\neq \emptyset$) {
 select and remove a node n from workset

 oldValueBefore := $ValBefore[n]$

 $ValAfter[n] := \prod_{<n,p> \in Edges} ValBefore[p]$

 $ValBefore[n] := F_n(ValAfter[n])$

 if oldValueBefore $\neq ValBefore[n]$ then
 for all $<w, n> \in Edges$, insert w into workset
 }

Dataflow-Analysis Example 3

Available-expressions analysis
- Whether an expression that has been previously computed may be reused
- Forward dataflow problem: from expression to points of re-use
- Meet semi-lattice:

```
\text{True}
\downarrow
\text{False}
```

- Meet operation:
 - AND of all predecessors
- At the beginning of each block, everything is True
 * This causes some problems for loops
Dataflow-Analysis Example 4

Very-Busy-Expression analysis
– An expression is very busy at a point \(p \) if it is guaranteed that it will be computed at some time in the future

– Backwards dataflow problem: from computation to use
– Meet Lattice:

```
True
|
False
```

– Meet operation: AND
The end: or is it?

Covered a broad range of topics
– Some formal concepts
– Some practical concepts

What we skipped
– Linking and loading
– Interpreters
– Register allocation
– Performance analysis / Proofs