Nondeterministic Finite Automata (NFA)

CS 536
Explore NFAs

Claim: NFAs add no power to DFAs
Epsilon transitions
Claim: Epsilon transitions add no power
Regular expressions
NFAs, formally

\[(Q, \Sigma, \delta, q, F)\]

- finite set of states
- the alphabet (characters)
- start state \(q \in Q\)
- final states \(F \subseteq Q\)
- transition function \(\delta : Q \times \Sigma \rightarrow 2^Q\)
NFA

To check if string is in $L(M)$ of NFA M, simulate set of choices it could make
NFA == DFA

Claim: \(L(NFA) = L(DFA) \)

Idea: we can only be in finitely many subsets of states at any one time

\[2^{|Q|} \] possible combinations of states

Why?
Why $2^{|Q|}$ states?

Build DFA that tracks the set of states that the NFA is in!

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Defn: let \(\text{succ}(s,c) \) be the set of choices the NFA could make in state \(s \) with character \(c \)

- \(\text{succ}(A,x) = \{A,B\} \)
- \(\text{succ}(A,y) = \{A\} \)
- \(\text{succ}(B,x) = \{C\} \)
- \(\text{succ}(B,y) = \{C\} \)
- \(\text{succ}(C,x) = \{D\} \)
- \(\text{succ}(C,y) = \{D\} \)
Build new DFA M' where $Q' = 2^Q$

To build DFA: Add an edge from state S on character c to state S' if S' represents the set of all states that a state in S could possibly transition to on input c.
\(\varepsilon \)-transitions

Eg: \(x^n \), where \(n \) is even or divisible by 3

Useful for taking union of two FSMs

In example, left side accepts even \(n \); right side accepts \(n \) divisible by 3
Eliminating ε-transitions

We want to construct ε-free FSM M' that is equivalent to M

Definition:
$eclose(s) = \text{set of all states reachable from } s \text{ using zero or more epsilon transitions}$

M' components
s is an accepting state of M' iff $eclose(s)$ contains an accepting state

$s \rightarrow c \rightarrow t$ is a transition in M' iff $q \rightarrow c \rightarrow t$ for some q in $eclose(s)$
Def: \(\text{eclose}(s) = \text{set of all states reachable from } s \text{ using zero or more epsilon transitions} \)

\(s \) is an accepting state of \(M' \) iff \(\text{eclose}(s) \) contains an accepting state

\(s \xrightarrow{c} t \) is a transition in \(M' \) iff \(q \xrightarrow{c} t \) for some \(q \) in \(\text{eclose}(s) \)
Recap

NFAs and DFAs are equally powerful
 any language definable as an NFA is definable as a DFA

ε-transitions do not add expressiveness to NFAs
 we showed a simple algorithm to remove ε-transitions
Regular expressions

Pattern describing a language

operands: single characters, epsilon

operators: from low to high precedence

 - alternation “or”: \(a | b \)
 - catenation: \(a.b, \ ab, \ a^3 \) (which is aaa)
 - iteration: \(a^* \) (0 or more a’s) a.k.a. "Kleene star"
Regexp, cont’d

Conventions:

a+ is aa*

letter is a|b|c|d|...|y|z|A|B|...|Z
digit is 0|1|2|...|9

not(x) all characters except x

. is any character

parentheses for grouping, e.g., (ab)*

ε, ab, abab, ababab
Regexp, example

Hex strings
start with 0x or 0X
followed by one or more hexadecimal digits
optionally end with l or L

$0(x|X)\text{hexdigit}+(L|l|\varepsilon)$
where hexdigit = digit|a|b|c|d|e|f|A|...|F

OR:

$(0(x|X)\text{hexdigit}_\text{lowercase}+(L|l|\varepsilon))$
|\quad

$(0(x|X)\text{hexdigit}_\text{uppercase}+(L|l|\varepsilon))$
Regexp, example

Single-line comments in Java/C/C++

Example: // this is a comment

Regular expression for a single-line comment

//((not(‘\n’))*‘\n’