CS 537 - Handout Oct 29

- From last class:
 - IO time = seek + rotational + transfer
 - Estimating IO time
 - Seq vs random
 - Cache
 - Disk scheduling (SJF NBF, SSTF, SPTF, Elevator)
- RAID
 - Redundant array of inexpensive disks
 - Big idea: use multiple disk in clever ways
 - Want to increase:
 - Performance (how fast?)
 - Capacity (how much data?)
 - Reliability (how many disks can fail without data loss?)
 - Transparent
 - Fault model: fail-stop
 - RAID-0: striping
 - Chunk size trade-offs
 - RAID-1: mirroring
 - RAID-4: parity
 - RAID-5: rotated parity
 - Main workloads: Seq read, seq write, rand read, rand write
 - Perf Analysis:
 - One logical operation -> how many physical operations?
 - Single request: latency
 - Many request: throughput

Workload/RAID	RAID 0	RAID 1	RAID 4	RAID 5
Seq Read	N.S	N/2. S	(N-1)S	(N-1)S
Seq Write	N.S	N/2. S	(N-1)S	(N-1)S
Rand Read	N.R	N.R	(N-1)R	N.R
Rand Write	N.R	N/2.R	R/2	N/4. R

Problems/Questions:

- 1. What are the advantages/disadvantages of RAID having the same interface as a block device?
- 2. Given a workload, how would you go about determining the chunk size for RAID 0?
- 3. If all you cared about was performance, which RAID level would you use and why?
- 4. Why is RAID 0 the upper limit on performance?
- 5. List the performance for all RAID levels for a single read/write seq/rand request. Why is this different from steady-state levels?
- 6. Why is sequential write performance on RAID 4 (N-1)S and not NS? Aren't all the disks in
- 7. A question direct from the book: for RAID 4, how many disks would need to be in the system so that the additive method performs fewer I/Os than the subtractive method; what is the cross-over point?
- 8. For RAID 4, what is the small write problem?
- 9. For which RAID levels can you increase random write performance by adding more disks?
- 10. How does RAID 5 solve the small update problem?
- 11. Why is random read performance for RAID 5 NR instead of (N-1)R like RAID4? Remember we still have to store parity.
- 12. Random write performance for RAID 5 is NR/4 because each logical request turns into four requests. Since this is the case in RAID 4 as well, why isnt the random write performance R/4 (instead of R/2)?
- 13. Given RAID-5 is like RAID 4 but better, why would someone ever use RAID-4?
- 14. If you write to two disks in parallel, the seek time (on average) is higher than the seek time on a single disk. Why?

Check out the RAID simulator online (link at the end of the book chapter).