
[537] GFS+MapReduce
Tyler Harter

12/01/14

Google File System

GFS
Goal: present global FS that stores data across
many machines. Need to handle 100’s TBs.
!

Contrast: NFS only exports a local FS on
one machine to other machines.
!

Google published details in 2003.
!

Open source implementation: Hadoop FS (HDFS)

Failure: NFS Comparison
NFS only recovers from temporary failure.
 - not permanent disk/server failure
 - recover means making reboot invisible
 - technique: retry
 (stateless and idempotent protocol helps)
!

GFS needs to handle permanent failure.
 - techniques: replication and failover (like RAID)

Measure Then Build
Google workload characteristics:
 - huge files (GBs)
 - almost all writes are appends
 - concurrent appends common
 - high throughput is valuable
 - low latency is not

Example Workloads
MapReduce
 - read entire dataset, do computation over it
!

Producer/consumer
 - many producers append work to file concurrently
 - one consumer reads and does work

Example Workloads
MapReduce
 - read entire dataset, do computation over it
!

Producer/consumer
 - many producers append work to file concurrently
 - one consumer reads and does work
 - append not idempotent, is work idempotent?

Co-design
Opportunity to build FS and application together.
!

Make sure applications can deal with FS quirks.
!

Avoid difficult FS features:
 - read dir
 - links
!

Special features: snapshot, atomic append

GFS Overview
Motivation
!

Architecture
!

Master metadata
!

Worker data

Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A A

Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB

Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Less orderly than RAID:
 - machines come and go, capacity may vary
 - different data may have different replication

Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Less orderly than RAID:
 - machines come and go, capacity may vary
 - different data may have different replication
 - how to map logical to physical?

Recovery
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Recovery
Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C C

Recovery
Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C CA

Recovery
Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C CA B

Recovery
Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C CA B

Machine may come back, or it may be dead forever.

Recovery
Server 1 Server 2 Server 3 Server 5

A ABB C C CA B

Server 4

A B

Recovery
Server 1 Server 2 Server 3 Server 5

A ABB C C CA B

Server 4

A B

Recovery
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A B

Recovery
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A B

Recovery
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

Observation
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

Maintaining replication and finding data will be difficult
unless we have a global view of the data.

Architecture

Master

Client Worker

Architecture

Master

Client Worker

RPCRPC

RPC

Architecture

Master

Client Worker

[metadata]

[data]

RPCRPC

RPC

Architecture

Master

Client Worker

(one)

(many)(many)

[metadata]

[data]

RPCRPC

RPC

Architecture

Master

Client Worker

(one)

(many)

[metadata]

local FS’s

RPCRPC

RPC

Architecture

Master

Client Worker

(one)

(many)

[metadata]

local FS’s

RPCRPC

RPC

metadata consistency easy

large capacity

Chunk Layer
Break GFS files into large chunks (e.g., 64MB).
!
Workers store physical chunks in Linux files.
!
Master maps logical chunk to physical chunk locations.

GFS Overview
Motivation
!

Architecture
!

Master metadata
!

Worker data

Chunk Map

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

lookup 924

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

w2,w5,w7

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

read 942:
offset=0
size=1MB

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

data

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

read 942:
offset=1MB
size=1MB

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

data

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

read 942:
offset=2MB
size=1MB

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

data

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

Master is not bottleneck because not involved in most reads.

Client Reads a Chunk

Master

chunk map:

logical
924
521
…

phys
w2,w5,w7
w2,w9,w11

…

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

How does client know what chunk to read?

File Namespace
Map path names to logical chunk lists.
!

1. Client sends path name to master.
2. Master sends chunk locations to client.
3. Client reads/writes to workers directly.

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

lookup /foo/bar

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

924: [w2,w5,w7]
813: […]

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

read 942:
offset=0MB
size=1MB

Chunk Size
GFS uses very large chunks, i.e., 64MB.
!

How does chunk size affect size of data structs?

What if Chunk Size Doubles?

Master

chunk map:
logical

924
813

phys
w2,w5,w7
w1,w8,w9 … …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

What if Chunk Size Doubles?

Master
file namespace:

/foo/bar => 924
/var/log => 123 lists half as long

chunk map:
logical

924
813

phys
w2,w5,w7
w1,w8,w9 … …

What if Chunk Size Doubles?

Master
file namespace:

/foo/bar => 924
/var/log => 123 lists half as long

chunk map:
logical

924
phys

w2,w5,w7 … …
half as many entries

Chunk Size
GFS uses very large chunks, i.e., 64MB.
!

How does chunk size affect size of data structs?
!

A: logical-block lists halved, chunk map halved
!

Any disadvantages to making chunks huge?

Chunk Size
GFS uses very large chunks, i.e., 64MB.
!

How does chunk size affect size of data structs?
!

A: logical-block lists halved, chunk map halved
!

Any disadvantages to making chunks huge?
 - sometimes slow. Cannot parallelize I/O as much.

Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM.
 - allows master to work with 1000’s of workers
 - what if master crashes?

Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM.
 - allows master to work with 1000’s of workers
 - what if master crashes?

File Namespace
Write namespace updates to two types of logs:
 - local disk (disk is never read except for crash)
 - disk on backup master (in case permanent fail)
!

Occasionally dump entire state to checkpoint.
 - use format that can be directly mapped for fast
 recovery (i.e., no parsing).
 - why can’t we use pointers?

Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM.
 - allows master to work with 1000’s of workers
 - what master crashes?

Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM.
 - allows master to work with 1000’s of workers
 - what master crashes?

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too?

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

WorkerMaster

A B C D

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

WorkerMaster

A B C D

I have
{A,B,C,D}

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

WorkerMaster

A B C D

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

WorkerMaster

A B

Chunk Map
Don’t persist on master. Just ask workers which
chunks they have.
!

What if worker dies too? Doesn’t matter, then that
worker can serve chunks in the map anyway.

WorkerMaster

A B

I have
{A,B}

GFS Overview
Motivation
!

Architecture
!

Master metadata
!

Worker data

Worker Consistency
How do we make sure physical chunks are
consistent with each other?
!

Corruption: delete chunks that violate checksum.
!

What about concurrent writes?

AAAA
AAAA
AAAA

chunk 143
(replica 1)

AAAA
AAAA
AAAA

chunk 143
(replica 2)

AAAA
AAAA
AAAA

chunk 143
(replica 3)

AAAA
AAAA
AAAA

chunk 143
(replica 1)

AAAA
AAAA
AAAA

chunk 143
(replica 2)

AAAA
AAAA
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
BBBB
AAAA

chunk 143
(replica 1)

AAAA
AAAA
AAAA

chunk 143
(replica 2)

AAAA
AAAA
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
BBBB
AAAA

chunk 143
(replica 1)

AAAA
AAAA
AAAA

chunk 143
(replica 2)

AAAA
CCCC
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
BBBB
AAAA

chunk 143
(replica 1)

AAAA
BBBB
AAAA

chunk 143
(replica 2)

AAAA
CCCC
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
BBBB
AAAA

chunk 143
(replica 1)

AAAA
CCCC
AAAA

chunk 143
(replica 2)

AAAA
CCCC
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
BBBB
AAAA

chunk 143
(replica 1)

AAAA
CCCC
AAAA

chunk 143
(replica 2)

AAAA
BBBB
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
CCCC
AAAA

chunk 143
(replica 1)

AAAA
CCCC
AAAA

chunk 143
(replica 2)

AAAA
BBBB
AAAA

chunk 143
(replica 3)

write
BBBB

write
CCCC

AAAA
CCCC
AAAA

chunk 143
(replica 1)

AAAA
CCCC
AAAA

chunk 143
(replica 2)

AAAA
BBBB
AAAA

chunk 143
(replica 3)

AAAA
CCCC
AAAA

chunk 143
(replica 1)

AAAA
CCCC
AAAA

chunk 143
(replica 2)

AAAA
BBBB
AAAA

chunk 143
(replica 3)

Chunks disagree, but all checksums are correct!

Worker Consistency: Strategy
We want to “serialize” writes.
!

That is, we want to decide an order of writes, and
make all workers use the same order.
!

Who to decide order?

Worker Consistency: Strategy
We want to “serialize” writes.
!

That is, we want to decide an order of writes, and
make all workers use the same order.
!

Who to decide order?
 - don’t want to overload master
 - let one replica be the primary and decide

Primary Replica
Master decide primary for each logical chunk.
!

What if primary dies?
!

Give primary leases that expire after 1 minute.
!

If master wants to reassign primary, and it can’t
reach old primary, just wait 1 minute.

GFS Summary
Fight failure with replication.
!

Metadata consistency is hard, centralize to make it
easier.
!

Data consistency is easier, distribute it for
scalability.
!

MapReduce

Problem
Datasets are too big to process single threaded.
!

Good concurrent programmers are rare.
!

Want a concurrent programming framework that is:
 - easy to use (no locks, CVs, race conditions)
 - general (works for many problems)

MapReduce
Strategy: break data into buckets, do computation
over each bucket.
!

Google published details in 2004.
!

Open source implementation: Hadoop

Example: Revenue per State

State Sale ClientID
WI 100 9292
CA 10 9523
WI 15 9331
CA 45 9523
TX 9 8810
WI 20 9292

How to quickly sum sales in
every state without any one
machine iterating over all results?

Strategy
One set of processes groups data into logical
buckets.
!

Each bucket has a single process that computes
over it.

Strategy
One set of processes groups data into logical
buckets. (mappers)
!

Each bucket has a single process that computes
over it. (reducers)

Strategy
One set of processes groups data into logical
buckets. (mappers)
!

Each bucket has a single process that computes
over it. (reducers)
!

Claim: if no bucket has too much data, no single
process can do too much work.

MapReduce Overview
Motivation
!

MapReduce Programming
!

Implementation

Example: Revenue per State

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

How to quickly sum sales in
every state without any one
machine iterating over all results?

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

mapper 1

WI 100
CA 10
WI 15

mapper 2

CA 45
TX 9
WI 20

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

mapper 1

WI 100
CA 10
WI 15

mapper 2

CA 45
TX 9
WI 20

WI 100,15
CA 10

CA 45
TX 9
WI 20

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

mapper 1

WI 100
CA 10
WI 15

mapper 2

CA 45
TX 9
WI 20

WI 100,15
CA 10

CA 45
TX 9
WI 20

reducer 1

reducer 2

Reduce WI

Reduce CA

Reduce TX

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

mapper 1

WI 100
CA 10
WI 15

mapper 2

CA 45
TX 9
WI 20

WI 100,15
CA 10

CA 45
TX 9
WI 20

reducer 1

reducer 2

Reduce WI

Reduce CA

Reduce TX

WI 135

CA 55
TX 9

Revenue per State

State Sale ClientID
WI 100 9292
CA 10 9523
WI 15 9331
CA 45 9523
TX 9 8810
WI 20 9292

Mappers could have grouped by any
field desired (e.g., by ClientID).

SQL Equivalents

SELECT sum(sale)
FROM tbl_sales
GROUP BY state;

SQL Equivalents

SELECT sum(sale)
FROM tbl_sales
GROUP BY clientID;

SQL Equivalents

SELECT max(sale)
FROM tbl_sales
GROUP BY clientID;

SQL Equivalents

SELECT max(sale)
FROM tbl_sales
GROUP BY clientID;

reduce

map

Mapper Output
Sometimes mappers simply classify records
(state revenue example).
!

Sometimes mappers produce multiple intermediate
records per input (e.g., friend counts).

Example: Counting Friends

friend1 friend2
133 155
133 99
133 300
300 99
300 21
99 155

133

155

99300

21

friend1 friend2
133 155
133 99
133 300
300 99
300 21
99 155

mapper 1

133 155
133 99
133 300

mapper 2

300 99
300 21
99 155

133

155

99300

21

friend1 friend2
133 155
133 99
133 300
300 99
300 21
99 155

mapper 1

133 155
133 99
133 300

mapper 2

300 99
300 21
99 155

133 155,99,300
155 133
99 133
300 133

300 99,21
99 300,155
21 300
155 99

Example: Counting Links

url html
http:// <html><body>…<a href=“…

… …

Many Other Workloads
Distributed grep (over text files)
!

URL access frequency (over web request logs)
!

Distributed sort (over strings)
!

PageRank (over all web pages)
!
…

Map/Reduce Function Types
map(k1,v1) —> list(k2,v2)
reduce(k2,list(v2)) —> list(k3,v3)

Hadoop API
public void map(LongWritable key, Text value) {
 // WRITE CODE HERE
}
!
public void reduce(Text key,
 Iterator<IntWritable> values) {
 // WRITE CODE HERE
}

public void map(LongWritable key, Text value) {
 String line = value.toString();
 StringToke st = new StringToke(line);
 while (st.hasMoreTokens())
 output.collect(st.nextToken(), 1);
}
!
public void reduce(Text key,
 Iterator<IntWritable> values) {
 int sum = 0;
 while (values.hasNext())
 sum += values.next().get();
 output.collect(key, sum);
}

what does!
this do?

MapReduce Overview
Motivation
!

MapReduce Programming
!

Implementation

MapReduce over GFS
MapReduce writes/reads data to/from GFS.
!
MapReduce workers run on same machines as GFS workers.

GFS
files mappers intermediate

local files reducers GFS
files

MapReduce over GFS

GFS
files mappers intermediate

local files reducers GFS
files

Why not store intermediate files in GFS?

MapReduce writes/reads data to/from GFS.
!
MapReduce workers run on same machines as GFS workers.

MapReduce over GFS

GFS
files mappers intermediate

local files reducers GFS
files

Which edges involve network I/O?

1 2 3 4

MapReduce writes/reads data to/from GFS.
!
MapReduce workers run on same machines as GFS workers.

MapReduce over GFS

GFS
files mappers intermediate

local files reducers GFS
files

Which edges involve network I/O? Edges 3+4. Maybe 1.

1 2 3 4

MapReduce writes/reads data to/from GFS.
!
MapReduce workers run on same machines as GFS workers.

MapReduce over GFS

GFS
files mappers intermediate

local files reducers GFS
files

How to avoid I/O for 1?

1 2 3 4

MapReduce writes/reads data to/from GFS.
!
MapReduce workers run on same machines as GFS workers.

Exposing Location
GFS exposes which servers store which files
(not transparent, but very useful!)
!

Hadoop example:
!
BlockLocation[]
getFileBlockLocations(Path p, long start, long len);
!
Spec: return an array containing hostnames, offset
and size of portions of the given file.

MapReduce Policy
MapReduce needs to decide which machines to use
for map and reduce tasks. Potential factors:
 - try to put mappers near one of the three replicas
 - for reducers, store one output replica locally
 - try to use underloaded machines
 - consider network topology

Failed Tasks
A MapReduce master server tracks status of all
map and reduce tasks.
!

If any don’t respond to pings, they are simply
restarted on different machines.
!

This is possible because tasks are deterministic,
and we still have the inputs.

Slow Tasks
Sometimes a machine gets overloaded or a
network link is slow.
!

With 1000’s of tasks, this will always happen.
!

Spawning duplicate tasks when there are only a
few stragglers left reduces some job times by 30%.

MapReduce Summary
MapReduce makes concurrency easy!
!

Limited programming environment, but works for a
fairly wide variety of applications.
!

Machine failures are easily handled.

Announcements

p5a due Friday.
!
Office hours today, after class, in lab.
!
Email sent about final exam topics.

