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Google File System



GFS
Goal: present global FS that stores data across 
many machines.  Need to handle 100’s TBs. 
!

Contrast: NFS only exports a local FS on 
one machine to other machines. 
!

Google published details in 2003. 
!

Open source implementation: Hadoop FS (HDFS)



Failure: NFS Comparison
NFS only recovers from temporary failure. 
 - not permanent disk/server failure 
 - recover means making reboot invisible 
 - technique: retry 
   (stateless and idempotent protocol helps) 
!

GFS needs to handle permanent failure. 
 - techniques: replication and failover (like RAID)



Measure Then Build
Google workload characteristics: 
 - huge files (GBs) 
 - almost all writes are appends 
 - concurrent appends common 
 - high throughput is valuable 
 - low latency is not



Example Workloads
MapReduce 
 - read entire dataset, do computation over it 
!

Producer/consumer 
 - many producers append work to file concurrently 
 - one consumer reads and does work 



Example Workloads
MapReduce 
 - read entire dataset, do computation over it 
!

Producer/consumer 
 - many producers append work to file concurrently 
 - one consumer reads and does work 
 - append not idempotent, is work idempotent?



Co-design
Opportunity to build FS and application together. 
!

Make sure applications can deal with FS quirks. 
!

Avoid difficult FS features: 
 - read dir 
 - links 
!

Special features: snapshot, atomic append



GFS Overview
Motivation 
!

Architecture 
!

Master metadata 
!

Worker data
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Replication
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Less orderly than RAID: 
 - machines come and go, capacity may vary 
 - different data may have different replication 
 - how to map logical to physical?
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Recovery
Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C CA B

Machine may come back, or it may be dead forever.
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Recovery
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A



Observation
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

Maintaining replication and finding data will be difficult 
unless we have a global view of the data.
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Architecture

Master

Client Worker

(one)

(many)

[metadata]

local FS’s

RPCRPC

RPC

metadata consistency easy

large capacity



Chunk Layer
Break GFS files into large chunks (e.g., 64MB). 
!
Workers store physical chunks in Linux files. 
!
Master maps logical chunk to physical chunk locations.



GFS Overview
Motivation 
!

Architecture 
!

Master metadata 
!

Worker data



Chunk Map

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…



Worker w2

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…
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chunk map:
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…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

lookup 924
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…

Worker w2

Local FS!
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…

client

read 942: 
offset=0 
size=1MB
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Master

chunk map:

logical 
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Local FS!
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924 
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…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

read 942: 
offset=1MB 
size=1MB



Client Reads a Chunk

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
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Client Reads a Chunk

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

read 942: 
offset=2MB 
size=1MB
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Client Reads a Chunk

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

Master is not bottleneck because not involved in most reads.



Client Reads a Chunk

Master

chunk map:

logical 
924 
521 
…

phys 
w2,w5,w7 
w2,w9,w11 

…

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

How does client know what chunk to read?



File Namespace
Map path names to logical chunk lists. 
!

1. Client sends path name to master. 
2. Master sends chunk locations to client. 
3. Client reads/writes to workers directly.



File Namespace

Master

chunk map:
logical 
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Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …
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File Namespace

Master

chunk map:
logical 

924 
phys 

w2,w5,w7 

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999

lookup /foo/bar



File Namespace

Master

chunk map:
logical 

924 
phys 

w2,w5,w7 

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999

924: [w2,w5,w7] 
813: […]



File Namespace

Master

chunk map:
logical 

924 
phys 

w2,w5,w7 

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999



File Namespace

Master

chunk map:
logical 

924 
phys 

w2,w5,w7 

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999

read 942: 
offset=0MB 
size=1MB



Chunk Size
GFS uses very large chunks, i.e., 64MB. 
!

How does chunk size affect size of data structs?



What if Chunk Size Doubles?

Master

chunk map:
logical 

924 
813

phys 
w2,w5,w7 
w1,w8,w9 … …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999



What if Chunk Size Doubles?

Master
file namespace:

/foo/bar => 924 
/var/log => 123 lists half as long

chunk map:
logical 

924 
813

phys 
w2,w5,w7 
w1,w8,w9 … …



What if Chunk Size Doubles?

Master
file namespace:

/foo/bar => 924 
/var/log => 123 lists half as long

chunk map:
logical 

924
phys 

w2,w5,w7 … …
half as many entries



Chunk Size
GFS uses very large chunks, i.e., 64MB. 
!

How does chunk size affect size of data structs? 
!

A: logical-block lists halved, chunk map halved 
!

Any disadvantages to making chunks huge?



Chunk Size
GFS uses very large chunks, i.e., 64MB. 
!

How does chunk size affect size of data structs? 
!

A: logical-block lists halved, chunk map halved 
!

Any disadvantages to making chunks huge? 
 - sometimes slow.  Cannot parallelize I/O as much.



Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM. 
 - allows master to work with 1000’s of workers 
 - what if master crashes?



Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM. 
 - allows master to work with 1000’s of workers 
 - what if master crashes?



File Namespace
Write namespace updates to two types of logs: 
 - local disk (disk is never read except for crash) 
 - disk on backup master (in case permanent fail) 
!

Occasionally dump entire state to checkpoint. 
 - use format that can be directly mapped for fast 
   recovery (i.e., no parsing). 
 - why can’t we use pointers?
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Chunk Map
Don’t persist on master.  Just ask workers which 
chunks they have. 
!

What if worker dies too?
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Chunk Map
Don’t persist on master.  Just ask workers which 
chunks they have. 
!

What if worker dies too?  Doesn’t matter, then that 
worker can serve chunks in the map anyway.

WorkerMaster

A B C D



Chunk Map
Don’t persist on master.  Just ask workers which 
chunks they have. 
!

What if worker dies too?  Doesn’t matter, then that 
worker can serve chunks in the map anyway.

WorkerMaster

A B



Chunk Map
Don’t persist on master.  Just ask workers which 
chunks they have. 
!

What if worker dies too?  Doesn’t matter, then that 
worker can serve chunks in the map anyway.

WorkerMaster

A B

I have 
{A,B}



GFS Overview
Motivation 
!

Architecture 
!

Master metadata 
!

Worker data



Worker Consistency
How do we make sure physical chunks are 
consistent with each other? 
!

Corruption: delete chunks that violate checksum. 
!

What about concurrent writes?



AAAA 
AAAA 
AAAA

chunk 143 
(replica 1)

AAAA 
AAAA 
AAAA

chunk 143 
(replica 2)

AAAA 
AAAA 
AAAA

chunk 143 
(replica 3)



AAAA 
AAAA 
AAAA

chunk 143 
(replica 1)

AAAA 
AAAA 
AAAA

chunk 143 
(replica 2)

AAAA 
AAAA 
AAAA

chunk 143 
(replica 3)

write 
BBBB

write 
CCCC



AAAA 
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chunk 143 
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AAAA 
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chunk 143 
(replica 2)

AAAA 
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write 
BBBB

write 
CCCC
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AAAA 
BBBB 
AAAA

chunk 143 
(replica 1)

AAAA 
BBBB 
AAAA

chunk 143 
(replica 2)

AAAA 
CCCC 
AAAA

chunk 143 
(replica 3)

write 
BBBB

write 
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AAAA 
BBBB 
AAAA

chunk 143 
(replica 1)

AAAA 
CCCC 
AAAA

chunk 143 
(replica 2)

AAAA 
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AAAA
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write 
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write 
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AAAA 
BBBB 
AAAA

chunk 143 
(replica 1)

AAAA 
CCCC 
AAAA

chunk 143 
(replica 2)

AAAA 
BBBB 
AAAA

chunk 143 
(replica 3)

write 
BBBB

write 
CCCC



AAAA 
CCCC 
AAAA

chunk 143 
(replica 1)

AAAA 
CCCC 
AAAA

chunk 143 
(replica 2)

AAAA 
BBBB 
AAAA

chunk 143 
(replica 3)

write 
BBBB

write 
CCCC
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(replica 1)

AAAA 
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AAAA 
CCCC 
AAAA

chunk 143 
(replica 1)

AAAA 
CCCC 
AAAA

chunk 143 
(replica 2)

AAAA 
BBBB 
AAAA

chunk 143 
(replica 3)

Chunks disagree, but all checksums are correct!
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We want to “serialize” writes. 
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That is, we want to decide an order of writes, and 
make all workers use the same order. 
!

Who to decide order?



Worker Consistency: Strategy
We want to “serialize” writes. 
!

That is, we want to decide an order of writes, and 
make all workers use the same order. 
!

Who to decide order? 
 - don’t want to overload master 
 - let one replica be the primary and decide



Primary Replica
Master decide primary for each logical chunk. 
!

What if primary dies? 
!

Give primary leases that expire after 1 minute. 
!

If master wants to reassign primary, and it can’t 
reach old primary, just wait 1 minute.



GFS Summary
Fight failure with replication. 
!

Metadata consistency is hard, centralize to make it 
easier. 
!

Data consistency is easier, distribute it for 
scalability. 
!



MapReduce



Problem
Datasets are too big to process single threaded. 
!

Good concurrent programmers are rare. 
!

Want a concurrent programming framework that is: 
 - easy to use (no locks, CVs, race conditions) 
 - general (works for many problems)



MapReduce
Strategy: break data into buckets, do computation 
over each bucket. 
!

Google published details in 2004. 
!

Open source implementation: Hadoop



Example: Revenue per State

State Sale ClientID
WI 100 9292
CA 10 9523
WI 15 9331
CA 45 9523
TX 9 8810
WI 20 9292

How to quickly sum sales in 
every state without any one 
machine iterating over all results?



Strategy
One set of processes groups data into logical 
buckets. 
!

Each bucket has a single process that computes 
over it.
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Strategy
One set of processes groups data into logical 
buckets.  (mappers) 
!

Each bucket has a single process that computes 
over it.  (reducers) 
!

Claim: if no bucket has too much data, no single 
process can do too much work.



MapReduce Overview
Motivation 
!

MapReduce Programming 
!

Implementation



Example: Revenue per State

State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

How to quickly sum sales in 
every state without any one 
machine iterating over all results?
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State Sale
WI 100
CA 10
WI 15
CA 45
TX 9
WI 20

mapper 1

WI 100
CA 10
WI 15

mapper 2

CA 45
TX 9
WI 20

WI 100,15
CA 10

CA 45
TX 9
WI 20

reducer 1

reducer 2

Reduce WI

Reduce CA

Reduce TX

WI 135

CA 55
TX 9



Revenue per State

State Sale ClientID
WI 100 9292
CA 10 9523
WI 15 9331
CA 45 9523
TX 9 8810
WI 20 9292

Mappers could have grouped by any 
field desired (e.g., by ClientID).



SQL Equivalents

SELECT sum(sale) 
FROM tbl_sales 
GROUP BY state;



SQL Equivalents

SELECT sum(sale) 
FROM tbl_sales 
GROUP BY clientID;



SQL Equivalents

SELECT max(sale) 
FROM tbl_sales 
GROUP BY clientID;



SQL Equivalents

SELECT max(sale) 
FROM tbl_sales 
GROUP BY clientID;

reduce

map



Mapper Output
Sometimes mappers simply classify records 
(state revenue example). 
!

Sometimes mappers produce multiple intermediate 
records per input (e.g., friend counts).



Example: Counting Friends

friend1 friend2
133 155
133 99
133 300
300 99
300 21
99 155

133

155

99300

21



friend1 friend2
133 155
133 99
133 300
300 99
300 21
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mapper 1
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99300

21



friend1 friend2
133 155
133 99
133 300
300 99
300 21
99 155

mapper 1

133 155
133 99
133 300

mapper 2

300 99
300 21
99 155

133 155,99,300
155 133
99 133
300 133

300 99,21
99 300,155
21 300
155 99



Example: Counting Links

url html
http:// <html><body>…<a href=“…

… …



Many Other Workloads
Distributed grep (over text files) 
!

URL access frequency (over web request logs) 
!

Distributed sort (over strings) 
!

PageRank (over all web pages) 
!
…



Map/Reduce Function Types
map(k1,v1) —> list(k2,v2) 
reduce(k2,list(v2)) —> list(k3,v3)



Hadoop API
public void map(LongWritable key, Text value) { 
 // WRITE CODE HERE 
} 
!
public void reduce(Text key, 
        Iterator<IntWritable> values) { 
 // WRITE CODE HERE 
}



public void map(LongWritable key, Text value) { 
 String line = value.toString(); 
 StringToke st = new StringToke(line); 
 while (st.hasMoreTokens()) 
  output.collect(st.nextToken(), 1); 
} 
!
public void reduce(Text key, 
                   Iterator<IntWritable> values) { 
  int sum = 0; 
  while (values.hasNext()) 
    sum += values.next().get(); 
  output.collect(key, sum); 
}

what does!
this do?



MapReduce Overview
Motivation 
!

MapReduce Programming 
!

Implementation



MapReduce over GFS
MapReduce writes/reads data to/from GFS. 
!
MapReduce workers run on same machines as GFS workers.

GFS 
files mappers intermediate 

local files reducers GFS 
files



MapReduce over GFS

GFS 
files mappers intermediate 

local files reducers GFS 
files

Why not store intermediate files in GFS?

MapReduce writes/reads data to/from GFS. 
!
MapReduce workers run on same machines as GFS workers.



MapReduce over GFS

GFS 
files mappers intermediate 

local files reducers GFS 
files

Which edges involve network I/O?

1 2 3 4

MapReduce writes/reads data to/from GFS. 
!
MapReduce workers run on same machines as GFS workers.



MapReduce over GFS

GFS 
files mappers intermediate 

local files reducers GFS 
files

Which edges involve network I/O?  Edges 3+4.  Maybe 1.

1 2 3 4

MapReduce writes/reads data to/from GFS. 
!
MapReduce workers run on same machines as GFS workers.



MapReduce over GFS

GFS 
files mappers intermediate 

local files reducers GFS 
files

How to avoid I/O for 1?

1 2 3 4

MapReduce writes/reads data to/from GFS. 
!
MapReduce workers run on same machines as GFS workers.



Exposing Location
GFS exposes which servers store which files 
(not transparent, but very useful!) 
!

Hadoop example: 
!
BlockLocation[] 
getFileBlockLocations(Path p, long start, long len); 
!
Spec: return an array containing hostnames, offset 
and size of portions of the given file.



MapReduce Policy
MapReduce needs to decide which machines to use 
for map and reduce tasks.  Potential factors: 
 - try to put mappers near one of the three replicas 
 - for reducers, store one output replica locally 
 - try to use underloaded machines 
 - consider network topology



Failed Tasks
A MapReduce master server tracks status of all 
map and reduce tasks. 
!

If any don’t respond to pings, they are simply 
restarted on different machines. 
!

This is possible because tasks are deterministic, 
and we still have the inputs.



Slow Tasks
Sometimes a machine gets overloaded or a 
network link is slow. 
!

With 1000’s of tasks, this will always happen. 
!

Spawning duplicate tasks when there are only a 
few stragglers left reduces some job times by 30%.



MapReduce Summary
MapReduce makes concurrency easy! 
!

Limited programming environment, but works for a 
fairly wide variety of applications. 
!

Machine failures are easily handled.



Announcements

p5a due Friday. 
!
Office hours today, after class, in lab. 
!
Email sent about final exam topics.


