
[537] AFS
Chapter 49
Tyler Harter

12/03/14

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System
 - AFS: Andrew File System

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System
 - AFS: Andrew File System [today]

NFS Review

NFS
Export local FS to network
 - many machines may mount
!

Goal: fast/simple crash recovery
!

Transparent access

NFS Arch

File!
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

If at first you don’t succeed,
and you’re stateless and idempotent,
then try, try again.

Idempotent
Applying f() once or N>1 times has same result.
!

Why is retry hard if we’re not idempotent?

Idempotent
Applying f() once or N>1 times has same result.
!

Why is retry hard if we’re not idempotent?
!

Retry may cause the operation to run multiple
times, resulting in wrong state.
!

E.g., stupid e-commerce sites that double charge
if you “click back or refresh” aren’t idempotent.

Stateless
Server still keeps state! Just not about clients.
!

E.g., we don’t have an “open” call for NFS.
!

Why is retry hard if we’re not stateless?

Stateless
Server still keeps state! Just not about clients.
!

E.g., we don’t have an “open” call for NFS.
!

Why is retry hard if we’re not stateless?
!

If server crashes, retried requests don’t have any
context. E.g., what does “read from fd 5” mean?

Cache Consistency

Local FS

Client Server

NFS
cache: Acache:

Client

NFS
cache:

Local FS

Client Server

NFS
cache: Acache: A read

Client

NFS
cache:

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: A

Client

NFS
cache: Aread

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: A

Client

NFS
cache: A

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

write!

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

“Update Visibility” problem: server doesn’t have latest.

Cache Consistency

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

flush

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

“Stale Cache” problem: client doesn’t have latest.

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: B

read

Cache Consistency

NFS
Update visibility: flush buffer on close (or sooner)
!

Stale cache: check before use (if expired).
!

No flock.
!

May often have weird behavior.

Andrew File System

AFS Goals
Primary goal: scalability! (many clients per server)
!
More reasonable semantics for concurrent file access.
!
Not good about handling some failure scenarios.

AFS Design
NFS: export local FS
!
AFS: present big file tree, store across many machines.

AFS Design
NFS: export local FS
!
AFS: present big file tree, store across many machines.

Break tree into “volumes.”
I.e., partial sub trees.

Viewing Volumes
[harter@egg] (3)$ pwd
/u/h/a/harter
[harter@egg] (4)$ fs lq
Volume Name Quota Used %Used Partition
u.harter 100000000 12964328 13% 76%
[harter@egg] (5)$ cd /p/wind/
[harter@egg] (6)$ fs lq
Volume Name Quota Used %Used Partition
p.wind.root 100000000 1000208 1% 0%

Arch
Server

Server

Server

V1
V2

V5 V6
V4

V3

collection of servers store
different volumes that
together make up file tree.

Arch
Server

Server

Server

V1
V2

V5 V6
V4

V3

volumes may be moved by
an administrator.

Arch
Server

Server

Server

V1
V2

V5 V6
V4

V3

volumes may be moved by
an administrator. V6

Arch
Server

Server

Server

V1
V2

V5
V4

V3

volumes may be moved by
an administrator. V6

Arch

Client

Server Server

V1
V2

V5
V4

client library gives seamless
view of file tree by
automatically finding write
volumes.

Server

V3
V6

Arch

Client

Server Server

V1
V2

V5
V4

Communication via RPC.
Servers store data in local
file systems.

Server

V3
V6

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks.

Volume Glue
Volumes should be glued together into a seamless
file tree.
!

Volume is a partial subtree.
!

Volume leaves may point to other volumes.

F

G

C

D

E

A

B

volume 9 volume 3

volume 7

volume 4

Server 1 Server 2

F

G

C

D

E

A

B

volume 9 volume 3

volume 7

volume 4

Server 1 Server 2

F

G

C

D

E

A

B

volume 9 volume 3

volume 7

volume 4

Server 1 Server 2

open A/B/C/D/E/F/G

Volume Database
Given a volume name, how do we know what
machine stores it?
!

Maintain volume database mapping volume name
to locations.
!

Replicate to every server.
 - clients can ask any server they please

Volume Movement
What if we want to migrate a volume to another
machine?
!

Steps:
 - copy data over
 - update volume database
!

Volume Movement
What if we want to migrate a volume to another
machine?
!

Steps:
 - copy data over
 - update volume database
!

What about updates during movement?

don’t want to halt I/O during

Copy
Machine 1 Machine 2

AAAA
AAAA
AAAA
AAAA

vol 9

Copy
Machine 1 Machine 2

AAAA
AAAA
AAAA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow

Copy
Machine 1 Machine 2

AAAA
AAAA
AAAA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA

Copy
Machine 1 Machine 2

AAAA
AAAA
AAAA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA

Copy
Machine 1 Machine 2

ABAA
AAAA
AAAA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA

write

Copy
Machine 1 Machine 2

ABAA
AAAA
AAAA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA

Copy
Machine 1 Machine 2

ABAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA

write

Copy
Machine 1 Machine 2

ABAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA

Copy
Machine 1 Machine 2

ABAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA

Copy
Machine 1 Machine 2

ABAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

ABAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAAwrite

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

shadow
AAAA
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

(freeze)

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
AAAA
AAAA
AAAA
AAAA

(freeze)

write
(blocked)

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
BBAA
AAAA
AABA
AAAA

(freeze)

write
(blocked)

Copy
Machine 1 Machine 2

BBAA
AAAA
AABA
AAAA

vol 9
BBAA
AAAA
AABA
AAAA

(freeze)

write
(blocked)

Copy
Machine 1 Machine 2

redirect
mach 2

vol 9 BBAA
AAAA
AABA
AAAA

write
(blocked) (freeze)

Copy
Machine 1 Machine 2

redirect
mach 2

vol 9 BBAA
AAAA
AABA
AAAA

write

Copy
Machine 1 Machine 2

redirect
mach 2

vol 9 BBAA
AAAA
AABA
BAAA

write

Copy
Machine 1 Machine 2

redirect
mach 2

vol 9 BBAA
AAAA
AABA
BAAA

Volume Movement
What if we want to migrate a volume to another
machine?
!

Steps:
 - copy data over
 - update volume database
!

What about updates during movement?

don’t want to halt I/O during

Volume Movement
What if we want to migrate a volume to another
machine?
!

Steps:
 - copy data over
 - update volume database
!

What about updates during movement?

what if somebody reads stale?

Volume Movement
What if we want to migrate a volume to another
machine?
!

Steps:
 - copy data over
 - update volume database
!

What about updates during movement?

what if somebody reads stale?
keep forwarding note at old
 location until all
 replicas updated

Copy
Machine 1 Machine 2

redirect
mach 2

vol 9 BBAA
AAAA
AABA
BAAA

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Cache Consistency
Update visibility
!

Stale cache

Local FS

Client Server

NFS
cache: Acache: A

Client

NFS
cache: A

Update Visibility

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

write!

Update Visibility

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

Update Visibility

Local FS

Client Server

NFS
cache: Acache: B

Client

NFS
cache: A

“Update Visibility” problem: server doesn’t have latest.

Update Visibility

Update Visibility
Clients updates not seen on servers yet.
!

NFS solution is flush blocks:
 - on close()
 - when low on memory
!

Problems
 - flushes not atomic (one block at a time)
 - two clients flush at once: mixed data

Update Visibility
Clients updates not seen on servers yet.
!

AFS solution:
 - flush on close
 - buffer whole files on local disk
!

Concurrent writes? Last writer (i.e., closer) wins.
!

Never get mixed data.

Cache Consistency
Update visibility
!

Stale cache

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

flush

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

Cache Consistency

Local FS

Client Server

NFS
cache: Bcache: B

Client

NFS
cache: A

“Stale Cache” problem: client doesn’t have latest.

Cache Consistency

Stale Cache
Clients have old version
!

NFS rechecks cache entries before using them,
assuming a check hasn’t been done “recently”.
!

“Recent” is too long: ?
!

“Recent” is too short: ?

Stale Cache
Clients have old version
!

NFS rechecks cache entries before using them,
assuming a check hasn’t been done “recently”.
!

“Recent” is too long: you read old data
!

“Recent” is too short: server overloaded with stats

Stale Cache
AFS solution: tell clients when data is overwritten.
!

When clients cache data, ask for “callback” from
server.
!

No longer stateless!

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?

Client Crash
What should client do after reboot?
!

Option 1: evict everything from cache
!

Option 2: ???

Client Crash
What should client do after reboot?
!

Option 1: evict everything from cache
!

Option 2: recheck before using

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?

Low Server Memory
Strategy: tell clients you are dropping their
callback.
!

What should client do?

Low Server Memory
Strategy: tell clients you are dropping their
callback.
!

What should client do? Mark entry for recheck.

Low Server Memory
Strategy: tell clients you are dropping their
callback.
!

What should client do? Mark entry for recheck.
!

How does server choose which entry to bump?

Low Server Memory
Strategy: tell clients you are dropping their
callback.
!

What should client do? Mark entry for recheck.
!

How does server choose which entry to bump?
Sadly, it doesn’t know which is most useful.

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?

Server Crashes
What if server crashes?

Server Crashes
What if server crashes?
!

Option: tell everybody to recheck everything
before next read.

Server Crashes
What if server crashes?
!

Option: tell everybody to recheck everything
before next read.
!

Option: persist callbacks.

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?
!
AFS paper: “there is a potential for inconsistency if the
callback state maintained by a [client] gets out of sync with
the [server state]”.

Prefetching
AFS paper notes: “the study by Ousterhout et al.
has shown that most files in a 4.2BSD environment
are read in their entirety.”
!

What are the implications for prefetching policy?

Prefetching
AFS paper notes: “the study by Ousterhout et al.
has shown that most files in a 4.2BSD environment
are read in their entirety.”
!

What are the implications for prefetching policy?
!

Aggressively prefetch whole files.

Whole-File Caching
Upon open, AFS fetches whole file (even if it’s
huge), storing it in local memory or disk.
!

Upon close, whole file is flushed (if it was written).
!

Convenient:
 - AFS needs to do work for open/close
 - reads/writes are local

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Why is this Inefficient?
Requests to server:
!
fd1 = open(“/a/b/c/d/e/1.txt”)
fd2 = open(“/a/b/c/d/e/2.txt”)
fd3 = open(“/a/b/c/d/e/3.txt”)
!

Why is this Inefficient?
Requests to server:
!
fd1 = open(“/a/b/c/d/e/1.txt”)
fd2 = open(“/a/b/c/d/e/2.txt”)
fd3 = open(“/a/b/c/d/e/3.txt”)
!

Same inodes and dir entries repeatedly read.
Cache prevent too much disk I/O.
Too much CPU, though.

Solution
Server returns dir entries to client.
!

Client caches entries, inodes.
!

Pro: partial traversal is the common case.
!

Con: first lookup requires many round trips.
!

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Process Structure
For each client, a different process ran on the
server.
!

Context switching costs were high.
!

Solution: ???

Process Structure
For each client, a different process ran on the
server.
!

Context switching costs were high.
!

Solution: use threads.
!

Shared addr space => more useful TLB entries.

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Which API is faster? More convenient?

open(int inode, ...)
!
open(char *path, ...)

Which API is faster? More convenient?

open(int inode, ...)
!
open(char *path, ...)
!

Lookup by inodes is faster (no traversal),
but less convenient.
!

Which open API is better?
client server

Local FS

app code AFS
open()

open()

Which open API is better?
client server

Local FS

app code AFS
open()

open()

use paths use inodes

Which API is faster? More convenient?

open(int inode, ...)
!
open(char *path, ...)
!

Lookup by inodes is faster (no traversal),
but less convenient.
!

AFS developers added first call so AFS could use it.

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Dedicated Lock Server

lock serverclient 1 client 2

Dedicated Lock Server

lock serverclient 1 client 2
lock(“/a”)

Dedicated Lock Server

lock serverclient 1 client 2
lock(“/a”) lock(“/a”)

Dedicated Lock Server

lock serverclient 1 client 2

Dedicated Lock Server

lock serverclient 1 client 2
acquired

Dedicated Lock Server

lock serverclient 1 client 2

Dedicated Lock Server

lock serverclient 1 client 2
unlock(“/a”)

Dedicated Lock Server

lock serverclient 1 client 2

Dedicated Lock Server

lock serverclient 1 client 2
acquired

Dedicated Lock Server

lock serverclient 1 client 2

Dedicated Lock Server

lock serverclient 1 client 2

Lock
Table

Lock Tablevoid table_lock(char *name) {
 hash_entry_t *entry;
 acquire(guard);
 entry = find_or_create(name);
 release(guard);
 lock(entry->lock);
}
!
void table_unlock(char *name) {
 hash_entry_t *entry;
 acquire(guard);
 entry = find_or_create(name);
 release(guard);
 unlock(entry->lock);
}

Lock Tablevoid table_lock(char *name) {
 hash_entry_t *entry;
 acquire(guard);
 entry = find_or_create(name);
 release(guard);
 lock(entry->lock);
}
!
void table_unlock(char *name) {
 hash_entry_t *entry;
 acquire(guard);
 entry = find_or_create(name);
 release(guard);
 unlock(entry->lock);
}

expose these
with RPCs

Outline
Volume management
Cache management
Name resolution
Process structure
Local-storage API
File locks

Summary
Multi-step copy and forwarding make volume
migration fast and consistent.
!

Workload drives design: whole-file caching.
!

State is useful for scalability, but makes
consistency hard.

Announcements
p5a and p5b due Dec 12.
!
Office hours today, at 1pm, in office.
!
Thursday discussion held this week.
!
New: can drop 1 sub project.

