1537 | File-System APIs

Chapter 39
Tyler Harter
11/03/14

Review RAID

RAID

Idea: build an awesome disk from small, cheap disks.

Metrics: 777

RAID

Idea: build an awesome disk from small, cheap disks.
Metrics: capacity, reliability, performance

Fundamental tradeoffs.
Why can’t we have the best capacity and reliability”?

RAID

RAID-0: no redundancy
RAID-1: mirroring

RAID-4:

RAID-5:

oarr

oarr

'y di

Vv D

sk
ock (rotated between disks)

RAID Tradeoffs

Assume 4 disks.
—val RAID-0, RAID-1, and RAID-5 (why not RAID-47)

capacity reliability

space (times C)
- — N V) A~
ok failures
- — N @V) &~

RAID-0 RAID-1 RAID-5 RAID-0 RAID-1 RAID-5

writes

reads

< ™ QN — -
(S sawi) indnoJy}

< ™ Q\ — @)
(S sewi) indnoJy}

jenuanbas

RAID-O RAID-1 RAID-5

< ™ Q\ — (@)
(4 sswi) IndnoJyl

RAID-O RAID-1 RAID-5

< ™ Q\ — @)
(4 sswi) Indnoiy)

wopue.

RAID-O RAID-1 RAID-5

RAID-0 RAID-1 RAID-5

throuput (times 1 disk)

AN

W

N

—_—

@)

RAID-1 Analysis

SegRead SegWrite RandRead RandWrite

RAID-1 Analysis

throuput (times 1 disk)

0
SegRead RandRead

All data is written twice, so write throughput is halved.

RAID-1 Analysis

throuput (times 1 disk)

SegRead SegWrite (RandRead) RandWrite

A mix of random reads can spread across all disks.

RAID-1 Analysis

throuput (times 1 disk)

SegRead SegWrite RandRead RandWrite

Why do sequential reads only get half throughput?

RAID-1: Sequential Reads

Reads: 101, 102, 103, 104, 105, 106, 107, 108, ...

Assume 4 disks.

—ach logical block Is stored on two physical disks.

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

time = 8 ™ X

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

Disk O:

Disk 1:

Disk 2:

Disk 3:

time = 8 ™ X

Disk O:

Disk 1:

Disk 2:

Disk 3:

RAID-1 Analysis

throuput (times 1 disk)

SegRead SegWrite RandRead RandWrite

Why do sequential reads only get half throughput?

RAID-1 Analysis

throuput (times 1 disk)

0
SegRead SegWrite RandRead RandWrite

Why do sequential reads only get half throughput?
Because skipping every other block doesn'’t save.

File-System Abstraction

What is a File?

Array of bytes.
Ranges of bytes can be read/written.

File system consists of many files.

What is a File?

Array of bytes.
Ranges of bytes can be read/written.
File system consists of many files.

Files need names so programs can
choose the right one.

File Names

hree types of names:
- Inode

- path

- file descriptor

File Names

hree types of names:

- path
- file descriptor

lInodes

—ach file has exactly one inode number.
Inodes are unigue (at a given time) within a FS.

Different file system may use the same number,
numbers may be recycled after deletes.

lInodes

—ach file has exactly one inode number.
Inodes are unigue (at a given time) within a FS.

Different file system may use the same number,
numbers may be recycled after deletes.

Show inodes via stat.

What does “I” stand for”?

“In truth, | don't know either. It was just a term that

we started to use. ‘Index’is my best guess,

because of the slightly unusual file system
structure that stored the access information of files

as a flat array on the disk...”

~ Dennis Ritchie

inode number

inodes

location
Size=12

location
slze

file

location
slze

file

location
sSlze=06

File APl (attempt 1)

read(int inode, void xbuf, size t nbyte)
write(int inode, void xbuf, size_t nbyte)

seek(int inode, off_t offset)

File APl (attempt 1)

read(int inode, void xbuf, size_t nbyte)
write(int inode, void xbuf, size_ t nbyte)

seek(int inode, off_t offset)

note: seek does not cause disk seek
unless followed by a read/write

File APl (attempt 1)

read(int inode, void xbuf, size t nbyte)
write(int inode, void xbuf, size_t nbyte)

seek(int inode, off_t offset)

File APl (attempt 1)

read(int inode, void xbuf, size_t nbyte)
write(int inode, void xbuf, size_ t nbyte)
seek(int inode, off_t offset)

Disadvantages?

- names hard to remember

- everybody has the same oftfset
- collisions (not hierarchical)

File APl (attempt 1)

pread(int inode, void xbuf,
off_ t offset, size t nbyte)
pwrite(int inode, void *buf,
off t offset size t nbyte)
seek{int—inode,—off t offset)

Disadvantages?
- names hard to remember

- eveproochRasthesarme-otisat

- collisions (not hierarchical)

File Names

hree types of names:
- Inode

- file descriptor

Paths

String names are tfriendlier than number names.

Paths

String names are tfriendlier than number names.

Store path-to-inode mappings in a predetermined
‘root” file (typically inode 2)

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

inode number

inodes

location
Size=12

location
slze

location
slze

‘readme.txt”: 3, "hello”; O, ...

location
sSlze=06

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

/readme.txt”: 3, “hello”: 0, ...

Paths

String names are tfriendlier than number names.

Store path-to-inode mappings in a predetermined
‘root” file (typically inode 2)

Paths

String names are tfriendlier than number names.

Store path-to-inode mappings in a predetermined
‘root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

inode number

inodes

location
Size=12

location
slze

“bashrc”; o, ...

location
slze

“etc”: O, ...

location
sSlze=06

settings: ...

inode number

inodes

location
Size=12

read /etc/bashrc

location
slze

“bashrc”; o, ...

location
slze

“etc”: O, ...

location
sSlze=06

settings: ...

reads: O

inode number

inodes

location
Size=12

read /etc/bashrc

location
slze

“bashrc”; o, ...

slze

location -

“etc”: O, ...

location

Slze=0

settings: ...

reads: T

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

read /etc/bashrc

“bashrc”; o, ...

S~
| “etc”: 0, .).

settings: ...

reads: 2

inode number

inodes read /etc/bashrc

| . |
location

0 .
Size=12 “bashrc”: 6, ...
; location
size
5 location “etc”: O, ...
size
location
3 |- .
Size=6 # settings: ...

reads: 3

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

read /etc/bashrc

| “bashrc”: 5, ...

/

“etc”: O, ...

settings: ...

reads: 4

inode number

inodes

location
Size=12

read /etc/bashrc

location
slze

“bashrc”; o, ...

location
slze

location 5

“etc”: O, ...

Slze=0
|

settings: ...

reads: 5

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

read /etc/bashrc

“bashrc”; o, ...

“etc”: O, ...

| # setlings: ...

reads: ©

Paths

String names are tfriendlier than number names.

Store path-to-inode mappings in a predetermined
‘root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

Paths

String names are tfriendlier than number names.

Store path-to-inode mappings in a predetermined
‘root” file (typically inode 2)

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

Reads for getting final inode called “traversal”.

Directory Calls

mkdir: create new directory
readdir: read/parse directory entries

Why no writedir?

Special Directory Entries

Tylers—-MacBook—-Pro:scratch trh$ 1s -la

total 728

drwxr-xr—-x 34
drwxr—-xr—-x+ 59
-rw—r——r—@ 1
—rw—r——r—— 1
—rw—r——r—— 1
drwXxr—-xr—x 4

D JED [D D I D D)

staff
staff
staff
staff
staff
staff

1156
2006
6148
553
553
136

Oct
Oct
Oct
Oct
Oct
Jun

RS
8
19
2
2
18

11:
15: .
:42 .DS_Store
:29 asdf.txt

105 asdf.txt~
15:

11
14
14

41 .
49

37 backup

File APl (attempt 2)

pread(char xpath, void xbuf,
off t offset, size_t nbyte)

pwrite(char xpath, void xbuf,
off t offset size t nbyte)

File APl (attempt 2)

pread(char xpath, void xbuf,
off t offset, size_t nbyte)

pwrite(char xpath, void xbuf,
off t offset size t nbyte)

File APl (attempt 2)

pread(char xpath, void xbuf,
off t offset, size_t nbyte)

pwrite(char xpath, void xbuf,
off t offset size t nbyte)

File Names

hree types of names:
- Inode
- path

File Descriptor (fd)

|dea: do traversal once, and store inode In
descriptor object. Do reads/writes via descriptor.

Also remember offset.

A file-descriptor table contains pointers to file
descriptors.

'he integers you're used to using for file |/O are
iIndexes into this table.

FD Table (xv6)

struct file {

struct 1node *ip;
uint off;

b

// Per—process state
struct proc {

struct file xofile[NOFILE]; // Open files

Code Snippet

int fdl = open(“file.txt”); // returns 3
read(fd1l, buf, 12);

int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

fd table

0

OO~ 0N =

|

Code Snippet

int fdl = open(“file.txt”); // returns 3

fds

offset = 0O
INnode =

Inode

location = ...
size = ...

“file.txt” also points here

Code Snippet

int fdl = open(“file.txt”); // returns 3
read(fdl, buf, 12);

fd table (s

0

] offset = 12 node

2 B inode = |

3 - location = ...
4 — size = ...

5

Code Snippet

int fdl = open(“file.txt”); // returns 3
read(fdl, buf, 12);
int fd2 = open(“file.txt”); // returns 4

fd table (s

0

1 |] offset = 12 node

2 iInode =

3 — location = ...
4[] offset = 0 Size = ...

5 :I inode =

Code Snippet

int fdl = open(“file.txt”); // returns 3
read(fdl, buf, 12);

int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

fd table (o

o[| S

1 |] offset = 12 node

2 iInode =

3 — location = ...

4[] offset = 0 Size = ...

— inode =
O

File AP| (attempt 3)

int fd = open(char xpath, int flag, mode_t mode)
read(int fd, void xbuf, size_t nbyte)
write(int fd, void *buf, size_ t nbyte)

close(int fd)

File AP| (attempt 3)

int fd = open(char xpath, int flag, mode_t mode)
read(int fd, void xbuf, size_t nbyte)
write(int fd, void *buf, size_ t nbyte)

close(int fd) advantages:
- string names

- hierarchical
- fraverse once
- different offsets

Deleting Files

There is no system call for deleting files!

Deleting Files

There is no system call for deleting files!

Inode (and associated fi
when there are no refere

e) is gar

nces (fro

nage collected

M paths or fds).

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).

Paths are deleted when: unlink() is called.

FDs are deleted when: 77?7

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).

Paths are deleted when: unlink() is called.

FDs are deleted when: close(), or process quits

Network File System Designers

A process can open a file, then remove the directory
entry for the file so that it has no name anywhere in the
file system, and still read and write the file. This is a
disgusting bit of UNIX trivia and at first we were just not
going to support it, but it turns out that all of the
orograms we didn’t want to have to fix (csh, sendmail,
etc.) use this for temporary files.

~ Sandberg etal.

Deleting Directories

Directories can also be unlinked with unlink().
But only if empty!

How does “rm -rf” work?

L et’s find out with strace!

void recursiveDelete(charx dirname) {
char filename[FILENAME_MAX];
DIR xdp = opendir (dirname);
struct dirent *ep;
while(ep = readdir (dp)) {
snprintf(filename, FILENAME_MAX,
"%s5/%s", dirname, ep->d_name);
if(is_dir(ep))
recursiveDelete(filename);
else
unlink(filename):

L

unlink(dirname);

}

Many File Systems

Many File Systems

Users often want to use many file systems.

For example:
- main disk

- backup disk
- AFS

- thumb drives

What is the most elegant way to support this”?

Many File Systems: Approach 1

\r VoS .:
e - "}) -
Recently Change Local Disk (¢
Public &7 -
-_—

Bl Desktop
- | |

& Jown :Jdﬂ Pv-(:’l-‘ 1 F

[]
Dar Mar e
lecent Places 2 ./

& Videos

with Remo 2 “\tywrame
" nEmovaoie (10J¢

Libranes ‘

: 'l Floppy Disk Drive (A
« Documents =
o’ Music

e PiCtures

B Videos HP Photosmart C6300 zenes
& (\\192.168.1.108\memory_card) (V:

«& Homegroup

1 Computer

www.ofzenandcomputing.com/burn-files-cd-dvd-windows?

http://www.ofzenandcomputing.com/burn-files-cd-dvd-windows7/

Many File Systems: Approach 2

|[dea: stitch all the file systems together into a super file system!

Many File Systems: Approach 2

|dea: stitch all the file systems together into a super file system!

sh> mount
/dev/sdal on / type ext4 (rw)
/dev/sdb1 on /backups type ext4 (rw)

AFS on /home/tyler type afs (rw)
harter@galap-1:~/537_projects /home/tyler/537 type sshis (rw)

L]
-~
-
-
-
~
~
L}
~
~
~
~
o
~
-~
-
~
-
L
-
~
-~
L}
~
~
~
-
~
~
L]
-~
~
-
L]
~
~
-
..
~

/dev/sdal on / :
/dev/sdb1 on /backups e \
AFS on /homeftyler ‘

harter@galap-1:... on /home/tyler/537

| INKS: Demonstrate

Special Calls

fsync

Write buffering improves performance (why?).
But what if we crash before the buffers are flushed?

fsync(int fd) forces bufters to flush to disk, and
(usually) tells the disk to flush it’'s write cache too.

This makes data durable.

renalime

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

“oldname”: 3, ...

settings: ...

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

settings: ...

inode number

inodes

location
Size=12

location
slze

location
slze

location
sSlze=06

"‘newname’”: 3

settings: ...

renalime

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

renalime

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

What if we crash?

renalime

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

What it we crash?
FS does extra work to guarantee atomicity.

Atomic File Update

Say we want to update file.ixt.

1. write r
2. fsync-

3.

ew data to new file.txt.tmp file
lle.txt.tmp

‘enalm

e file.txt.tmp over file.txt, replacing it

Concurrency

How can multiple processes avoid updating the
same file at the same time?

Concurrency

How can multiple processes avoid updating the
same file at the same time?

Normal locks do
developed their

N't WOr

K, as developers may have

orogra

Ms Independently.

Concurrency

How can multiple processes avoid updating the
same file at the same time?

Normal locks don't work, as developers may have
developed their programs independently.

Use flock(), for example:
- flock(td, LOCK_EX)

- flock(td, LOCK_UN)

summary

Using multiple types of name provides
- convenience
- efficiency

Mount and link features provide flexibility.

Special calls (fsync, rename, flock) let developers
communicate special requirements to FS.

Announcements

pda and p4b are out!
- don't underestimate p4b.

Office hours now, in lab.

