
[537] LFS
Chapters 43-44

Tyler Harter
11/17/14

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System
 - AFS: Andrew File System

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System [today]
!

Network
 - NFS: Network File System
 - AFS: Andrew File System

Journaling “Review”

Motivation: Redundancy
Definition: if A and B are two pieces of data, and
knowing A eliminates some or all the values B could
B, there is redundancy between A and B.
!
Superblock: field contains total blocks in FS.
!
Inode: field contains pointer to data block.
!
Is there redundancy between these fields? Why?

FFS Redundancy
Examples:
Dir entries AND inode table.
Dir entries AND inode link count.
Inode pointers AND data bitmap.
Data bitmap AND group descriptor.
Inode file size AND inode/indirect pointers.
…

Regaining Consistency After Crash

Solution 1: reformat disk
!

Solution 2: guess (fsck)
!

Solution 3: do fancy bookkeeping before crash

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place
3. write new, discard old [today]

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place
3. write new, discard old [today]

1. Journal Old, Overwrite In-Place

12

file data

5

1. Journal Old, Overwrite In-Place

12

file data

5 12 ...

1. Journal Old, Overwrite In-Place

12

file data

5 12 5

1. Journal Old, Overwrite In-Place

10

file data

5 12 5

1. Journal Old, Overwrite In-Place

10

file data

7 12 5

1. Journal Old, Overwrite In-Place

10

file data

7

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place
3. write new, discard old [today]

2. Journal New, Overwrite In-Place

12

file data

5

2. Journal New, Overwrite In-Place

12

file data

5 10 ...

2. Journal New, Overwrite In-Place

12

file data

5 10 7

2. Journal New, Overwrite In-Place

10

file data

5 10 7

2. Journal New, Overwrite In-Place

10

file data

7 10 7

2. Journal New, Overwrite In-Place

10

file data

7

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place
3. write new, discard old [today]

3. Write New, Discard Old

12

file data

5

3. Write New, Discard Old

12

file data

5 10 ...

3. Write New, Discard Old

12

file data

5 10 7

3. Write New, Discard Old

12

file data

5 10 7

3. Write New, Discard Old

file data

10 7

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place
3. write new, discard old [today]

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!
Implication: at some point in time, all old AND
all new data must be on disk at same time.
!
Three techniques:
1. journal old, overwrite in place
2. journal new, overwrite in place -- do exercise 1 (worksheet)
3. write new, discard old [today]

File System Integration
Observation: some data (e.g., user data) is less important.
!
If we want to only journal FS metadata, we need tighter
integration.

FS

Journal

Scheduler

Disk

File System Integration
Observation: some data (e.g., user data) is less important.
!
If we want to only journal FS metadata, we need tighter
integration.

FS!
Journal

Scheduler

Disk

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.
!

What is the worst type of garbage we could get?

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.
!

What is the worst type of garbage we could get?
How to avoid?

Writeback Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B’ TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

what if we crash now? Solutions?

Ordered Journaling
Still only journal metadata.
!

But write data before the transaction.
!

May still get scrambled data on update.
!

But appends will always be good.
!

No leaks of sensitive data!

Ordered Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B’ TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Log-Structured File System

Copy On Write (COW)
Do problem 2.

LFS: Log-Structured File System
Different than FFS:
 - optimizes allocation for writes instead of reads
!

Different than Journaling:
 - use copy-on-write for atomicity

Performance Goal
Ideal: use disk purely sequentially.

Performance Goal
Ideal: use disk purely sequentially.
!

Hard for reads -- why?
!

!

Easy for writes -- why?

Performance Goal
Ideal: use disk purely sequentially.
!

Hard for reads -- why?
 - user might read files X and Y not near each other
!

Easy for writes -- why?
 - can do all writes near each other to empty space

Observations
Memory sizes are growing (so cache more reads).
!

Growing gap between sequential and random I/O
performance.
!

Existing file systems not RAID-aware (don’t avoid
small writes).

LFS Strategy
Just write all data sequentially to new segments.
!

Never overwrite, even if that means we leave
behind old copies.
!

Buffer writes until we have enough data.

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

S1

Big Picture

buffer:

S0disk: S3S2

segments

Data Structures (attempt 1)
What can we get rid of from FFS?

Data Structures (attempt 1)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps

Data Structures (attempt 1)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps
!

Inodes are no longer at fixed offset.
 - use offset instead of table index for name.
 - note: upon inode update, inode number changes.

I2 D I9 D

Overwrite Data in /file.txt

root inode

I2 D I9 D

Overwrite Data in /file.txt

root directory entries

I2 D I9 D

Overwrite Data in /file.txt

file inode

I2 D I9 D

Overwrite Data in /file.txt

file data

I2 D I9 D

Overwrite Data in /file.txt

D’I2 D I9 D

Overwrite Data in /file.txt

D’I2 D I9 D

Overwrite Data in /file.txt

NO! This would be a random write.

I9D’I2 D I9 D

Overwrite Data in /file.txt

DI9D’I2 D I9 D

Overwrite Data in /file.txt

I2DI9D’I2 D I9 D

Overwrite Data in /file.txt

I2DI9D’I2 D I9 D

Overwrite Data in /file.txt

old new

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.
!

Solution: keep inode numbers constant. Don’t
base on offset.

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.
!

Solution: keep inode numbers constant. Don’t
base on offset.
!

Before we found inodes with math. How now?

Data Structures (attempt 2)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps
!

Inodes are no longer at fixed offset.
 - use imap struct to map number => inode.

imap

S1S0disk: S3S2

segments

imap

imap

S1S0disk: S3S2

segments

table of millions of
entries (4b each)

imap

imap

S1S0disk: S3S2

segments

table of millions of
entries (4b each)

problem: updating imap each time makes I/O random.

Problem
Dilemma:
1. imap too big to keep in memory
2. don’t want to use random writes for imap

Attempt 3
Dilemma:
1. imap too big to keep in memory
2. don’t want to use random writes for imap
!

Solution:
write imap in segments.
keep pointers to pieces of imap in memory.

imap

imap

S1S0disk: S3S2

segments

imap

S1S0disk: S3S2

segments

imap

S1S0disk: S3S2

segments

ptrs to
imap piecesmemory:

Example Write

…disk:

data

Example Write

…disk:

inodedata

Example Write

…disk:

imapinodedata

Example Write

…disk:

Other Issues
Crashes
!

Garbage Collection

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!
!

Better approach: occasionally checkpoint the
pointers to imap pieces on disk.

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!
!

Better approach: occasionally checkpoint the
pointers to imap pieces on disk.
!

Checkpoint often: random I/O.
Checkpoint rarely: recovery takes longer.
Example: checkpoint every 30s

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

after last
checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

tail after last
checkpoint

Crash!

S1S0disk: S3S2

checkpoint

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

get pointers
from checkpoint

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

get pointers
by scanning

after tail.

tail after last
checkpoint

Checkpoint Overview
Checkpoint occasionally (e.g., every 30s).
!

Upon recovery:
 - read checkpoint to get most pointers and tail
 - get rest of pointers by reading past tail

Checkpoint Overview
Checkpoint occasionally (e.g., every 30s).
!

Upon recovery:
 - read checkpoint to get most pointers and tail
 - get rest of pointers by reading past tail
!

What if we crash during checkpoint?

v2v1

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

v2???

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v2v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

???v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v4v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

v4???

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v4v5

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

Other Issues
Crashes
!

Garbage Collection

Versioning File Systems
Motto: garbage is a feature!

Versioning File Systems
Motto: garbage is a feature!
!

Keep old versions in case the user wants to revert
files later.
!

Like Dropbox.

Garbage Collection
Need to reclaim space:
1. when no more references (any file system)
2. after a newer copy is created (COW file system)
!

We want to reclaim segments.
 - tricky, as segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

how much data is good in each?

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

FREEUSED

Garbage Collection

USEDFREEdisk segments: FREEUSED

10% 95% 95%

release input segments

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid?
!

Policy: which segments to compact?

Mechanism
Is an inode the latest version?
Check imap to see if it is pointed to (fast).
!

Is a data block the latest version?
Scan ALL inodes to see if it is pointed to (very slow).

Mechanism
Is an inode the latest version?
Check imap to see if it is pointed to (fast).
!

Is a data block the latest version?
Scan ALL inodes to see if it is pointed to (very slow).
!

Solution: segment summary that lists inode
corresponding to each data block.

Block Liveness

:Ddisk: SS… … …

Block Liveness

:Ddisk: SS… …

am i alive?

…

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

…

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

no, die already

inode

Block Liveness

:’(disk: SS… …

am i alive?

imap

… D’

no, die already

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid?
!

Policy: which segments to compact?

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid? [segment summary]
!

Policy: which segments to compact?

Policy
Many possible:
!

clean most empty first
clean coldest
more complex heuristics…

Conclusion
Journaling: let’s us put data wherever we like.
Usually in a place optimized for future reads.
!

LFS: puts data where it’s fastest to write.
!

Other COW file systems: WAFL, ZFS, btrfs.

Announcements
Thursday discussion
 - review midterm 2.
!
Office hours
 - today, after class, in lab
!

