
1. Atomic Update with Journaling!!
We are trying to transfer $5 from Alice to Bob.  The application uses the extra blocks as 
a journal.  The disk thus goes through the following series of states:!!

!
If we crash, the following recovery function (pseudo code) runs:!!
void recovery() { 
 if (read(block-4) == 1) { 
  A = read(block-2) 
  B = read(block-3) 
  write(A to block-0) 
  write(B to block-1) 
  write(0 to block-4) 
 } 
} !
Show the resulting state after running recovery() for each time in the above table:!!

Time Block 0: Alice Block 1: Bob Block 2: extra Block 3: extra Block 4: extra

1 12 3 0 0 0

2 12 3 7 0 0

3 12 3 7 8 0

4 12 3 7 8 1

5 7 3 7 8 1

6 7 8 7 8 1

7 7 8 7 8 0

Time Block 0: Alice Block 1: Bob Block 2: extra Block 3: extra Block 4: extra

1

2

3

4

5

6

7



2. Atomic Update with Copy-On-Write!!
One disadvantage with journaling is that new data is written twice (or the old data must 
be backed up).  Design a new algorithm with fewer I/O that only writes new data once.!!
Hints:!
 - with read_alice(), etc., you don’t always have to store the latest data in same block!
 - a solution that doesn’t require a recovery method is possible (and desirable)!!
void update_accounts(int alice_cash, int bob_cash) { !!!!!!
} !
int read_alice() { !!!!!!
} !
int read_bob() { !!!!!!
}


