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File-System Case Studies
Local 
 - FFS: Fast File System 
 - LFS: Log-Structured File System 
!

Network 
 - Intro: communication basics [today] 
 - NFS: Network File System 
 - AFS: Andrew File System



Review



Atomicity
Say we want to do several things. 
!

Atomicity means we don’t get interrupted when 
partially done (or at least that we can make it 
appear that way to the user). 
!

Concurrency: we’re worried about other threads 
Persistence: we’re worried about crashes



Atomic Update
Say we want to update a file foo.txt.  If we crash, we 
want one of the following: 
 - all old data 
 - all new data 
!

Strategy: write new data to foo.tmp, and only after 
that’s complete, replace foo.txt by switching names.



Bad Protocol
copy foo.txt to foo.tmp (with changes) 
rename foo.tmp to foo.txt
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Good Protocol
copy foo.txt to foo.tmp (with changes) 
fsync foo.tmp 
rename foo.tmp to foo.txt

foo.txt

New Data
(on disk)

(on disk)



Local FS Comparison
FFS+Journal: 
 - must write data twice (writes expensive) 
 - can put data exactly where we like (reads cheaper) 
!

LFS: 
 - all writes sequential (writes cheaper) 
 - reads may be very random (reads expensive)



Local FS Comparison
In what ways is FFS more complex? 
!

In what ways is LFS more complex? 
!

Compare group descriptor to segment summary. 
!

LFS: why don’t we need to update root inode upon 
updating any file?



Distributed Systems



OSTEP Definition
Def: more than 1 machine 
!

Examples:  
 - client/server: web server and web client 
 - cluster: page rank computation 
!

Other courses: 
CS 640: Networking 
CS 739: Distributed Systems



Why Go Distributed?
More compute power 
!

More storage capacity 
!

Fault tolerance 
!

Data sharing



New Challenges
System failure: need to worry about partial failure. 
!

Communication failure: links unreliable



Communication
All communication is inherently unreliable. 
!

Need to worry about: 
 - bit errors 
 - packet loss 
 - node/link failure



Why are network sockets 
less reliable than pipes?
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?

From A’s view, network and 
B are largely a black box.



Overview
Raw messages 
!
Reliable messages 
!
OS abstractions 
 - virtual memory 
 - global file system 
!
Programming-languages abstractions 
 - remote procedure call



Raw Messages: UDP
API: 
 - reads and writes over socket file descriptors 
 - messages sent from/to ports to target a process on machine 
!
Provide minimal reliability features: 
 - messages may be lost 
 - messages may be reordered 
 - messages may be duplicated 
 - only protection: checksums 



Raw Messages: UDP
Advantages 
 - lightweight 
 - some applications make better reliability decisions  
   themselves (e.g., video conferencing programs) 
!
Disadvantages 
 - more difficult to write application correctly 



Overview
Raw messages 
!
Reliable messages 
!
OS abstractions 
 - virtual memory 
 - global file system 
!
Programming-languages abstractions 
 - remote procedure call



Strategy
Using software, build reliable, logical connections 
over unreliable connections. 
!

Strategies: 
 - acknowledgment



ACK
Sender 

[send message] 
!
!

[recv ack]

Receiver 
!

[recv message] 
[send ack]

Sender knows message was received.



ACK
Sender 

[send message] 
!
!

Receiver 

Sender misses ACK…  What to do?
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Strategies: 
 - acknowledgment 
 - timeout
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Timeout
Sender 

[send message] 
[start timer] 

!
… waiting for ack … 

!
[timer goes off] 
[send message] 

!
!

[recv ack]

Receiver 
!
!
!
!
!
!
!

[recv message] 
[send ack]
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How long to wait?



Timeout: Issue 1
How long to wait? 
!

Too long: system feels unresponsive 
!

Too short: messages needlessly re-sent 
!

Messages may have been dropped due to 
overloaded server.  Aggressive clients worsen this.



Timeout: Issue 1
How long to wait? 
!

One strategy: be adaptive. 
!

Adjust time based on how long acks usually take. 
!

For each missing ack, wait longer between retries.



Timeout: Issue 2
What does a lost ack really mean?



Sender 
[send message] 

!
!

[timout] 

Receiver 
!
!
!
!
!

Sender 
[send message] 

!
!

[timout] 

Receiver 
!

[recv message] 
[send ack]

C
as

e 
1

C
as

e 
2

How can sender 
tell between these 
two cases?
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Timeout: Issue 2
What does a lost ack really mean? 
!

ACK: message received exactly once 
!

No ACK: message received at most once 
!

What if message is command to increment counter?



Proposed Solution

Sender could send an AckAck so receiver knows 
whether to retry sending an Ack. 
!

Sound good?
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general 1 general 2
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Aside: Two Generals’ Problem
general 1 general 2

enemy

Suppose a generals agree after N messages. 
Did the arrival of the N’th message change anybodies decision? 
 - if yes: then what if the N’th message had been lost? 
 - if no: then why bother sending N messages?



Timeout: Issue 2
What does a lost ack really mean? 
!

ACK: message received exactly once 
!

No ACK: message received at most once 
!

What if message is command to increment counter?
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Strategy
Using software, build reliable, logical connections 
over unreliable connections. 
!

Strategies: 
 - acknowledgment 
 - timeout 
 - remember sent messages



Receiver Remembers Messages

Sender 
[send message] 

!
!
!
!

[timout] 
[send message] 

!
!

[recv ack]

Receiver 
!

[recv message] 
[send ack] 

!
!
!
!

[ignore message] 
[send ack]



Receiver Remembers Messages

Sender 
[send message] 

!
!
!
!

[timout] 
[send message] 

!
!

[recv ack]

Receiver 
!

[recv message] 
[send ack] 

!
!
!
!

[ignore message] 
[send ack]

how do we 
know to ignore?



Solutions
Solution 1: remember every message ever sent.



Solutions
Solution 1: remember every message ever sent. 
!

Solution 2: sequence numbers 
 - give each message a seq number 
 - receiver knows all messages before an N have  
   been seen 
 - receiver remembers messages sent after N



TCP
Most popular protocol based on seq nums. 
!

Also buffers messages so they arrive in order. 
!

Timeouts are adaptive.



Overview
Raw messages 
!
Reliable messages 
!
OS abstractions 
 - virtual memory 
 - global file system 
!
Programming-languages abstractions 
 - remote procedure call
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Inspiration: threads share memory 
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Virtual Memory
Inspiration: threads share memory 
!

Idea: processes on different machines share mem 
!

Strategy: 
 - a bit like swapping we saw before 
 - instead of swap to disk, swap to other machine 
 - sometimes multiple copies may be in memory 
   on different machines
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map 3-page region into both memories.
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Y X’
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……

A reads 1st page



Virtual Memory Problems
What if a machine crashes? 
 - mapping disappears in other machines 
 - how to handle? 
!

Performance? 
 - when to prefetch? 
 - loads/stores expected to be fast 
!

DSM (distributed shared memory) not used today.



Global File System
Advantages 
 - file access is already expected to be slow 
 - use common API 
 - no need to modify applications (sorta true, 
   flocks over NFS don’t work) 
!

Disadvantages 
 - doesn’t always make sense, e.g., for video app



Overview
Raw messages 
!
Reliable messages 
!
OS abstractions 
 - virtual memory 
 - global file system 
!
Programming-languages abstractions 
 - remote procedure call



RPC
Remote Procedure Call. 
!

What could be easier than calling a function? 
!

Strategy: create wrappers so calling a function on 
another machine feels just like calling a local 
function. 
!

This abstraction is very common in industry.
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int foo(char *msg) { 
 … 
}

Machine B



RPC
int main(…) { 
 int x = foo(); 
}

Machine A
int foo(char *msg) { 
 … 
}

Machine B

Want main() on A to call foo() on B.



RPC
int main(…) { 
 int x = foo(); 
}

Machine A
int foo(char *msg) { 
 … 
}

Machine B

Want main() on A to call foo() on B.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
}

Machine B

Want main() on A to call foo() on B.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

Want main() on A to call foo() on B.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

Actual calls.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

What it feels like for programmer.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

Wrappers.

client 
wrapper

server 
wrapper



RPC Tools
RPC packages help with this with two components. 
!

(1) Stub generation 
      - create wrappers automatically 
!

(2) Runtime library 
      - thread pool 
      - socket listeners call functions on server



RPC Tools
RPC packages help with this with two components. 
!

(1) Stub generation!
      - create wrappers automatically 
!

(2) Runtime library 
      - thread pool 
      - socket listeners call functions on server



Stub Generation
Many tools will automatically generate wrappers: 
 - rpcgen 
 - thrift 
 - protobufs 
!

Programmer fills in generated stubs.



Wrapper Generation
Wrappers must do conversions: 
 - client arguments to message 
 - message to server arguments 
 - server return to message 
 - message to client return 
!
Need uniform endianness (wrappers do this). 
!
Conversion is called marshaling/unmarshaling, 
or serializing/deserializing.



Wrapper Generation: Pointers
Why are pointers problematic?
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Wrapper Generation: Pointers
Why are pointers problematic? 
!

The addr passed from the client will not be valid 
on the server. 
!

Solutions? 
 - smart RPC package: follow pointers 
 - distribute generic data structs with RPC package
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RPC packages help with this with two components. 
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(1) Stub generation!
      - create wrappers automatically 
!

(2) Runtime library 
      - thread pool 
      - socket listeners call functions on server



RPC Tools
RPC packages help with this with two components. 
!

(1) Stub generation 
      - create wrappers automatically 
!

(2) Runtime library!
      - thread pool 
      - socket listeners call functions on server



Runtime Library
Design decisions: 
!

How to serve calls? 
 - usually with a thread pool 
!

What underlying protocol to use? 
 - usually UDP
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!
!
!
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!
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[return] 
[tcp send] 

!
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RPC over TCP



Sender 
[call] 

[tcp send] 
!
!
!
!
!
!
!

[recv] 
[ack] 

Receiver 
!
!

[recv] 
[ack] 

[exec call] 
… 
!

[return] 
[tcp send] 

!
!

RPC over TCP

Why wasteful?



RPC over UDP
Strategy: use function return as implicit ACK. 
!

Piggybacking technique. 
!

What if function takes a long time? 
 - then send a separate ACK



Conclusion
Many communication abstraction possible: 
!

Raw messages (UDP) 
Reliable messages (TCP) 
Virtual memory (OS) 
Global file system (OS) 
Function calls (RPC)



Announcements
Thursday discussion 
 - review midterm 2. 
!
Office hours 
 - today at 1pm, in office 
!


