
[537] Distributed Systems
Chapters 42
Tyler Harter

11/19/14

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - NFS: Network File System
 - AFS: Andrew File System

File-System Case Studies
Local
 - FFS: Fast File System
 - LFS: Log-Structured File System
!

Network
 - Intro: communication basics [today]
 - NFS: Network File System
 - AFS: Andrew File System

Review

Atomicity
Say we want to do several things.
!

Atomicity means we don’t get interrupted when
partially done (or at least that we can make it
appear that way to the user).
!

Concurrency: we’re worried about other threads
Persistence: we’re worried about crashes

Atomic Update
Say we want to update a file foo.txt. If we crash, we
want one of the following:
 - all old data
 - all new data
!

Strategy: write new data to foo.tmp, and only after
that’s complete, replace foo.txt by switching names.

Bad Protocol
copy foo.txt to foo.tmp (with changes)
rename foo.tmp to foo.txt

Bad Protocol

foo.txt Old Data
(on disk)

Bad Protocol
copy foo.txt to foo.tmp (with changes)

foo.txt Old Data
(on disk)

foo.tmp New Data
(in RAM)

Bad Protocol
copy foo.txt to foo.tmp (with changes)
rename foo.tmp to foo.txt

foo.txt

New Data
(in RAM)

Old Data
(on disk)

Bad Protocol
copy foo.txt to foo.tmp (with changes)
rename foo.tmp to foo.txt

foo.txt

New Data
(in RAM)

(on disk)

Good Protocol
copy foo.txt to foo.tmp (with changes)
fsync foo.tmp
rename foo.tmp to foo.txt

Good Protocol

foo.txt Old Data
(on disk)

Good Protocol
copy foo.txt to foo.tmp (with changes)

foo.txt Old Data
(on disk)

foo.tmp New Data
(in RAM)

Good Protocol
copy foo.txt to foo.tmp (with changes)
fsync foo.tmp

foo.txt Old Data
(on disk)

foo.tmp New Data
(on disk)

Good Protocol
copy foo.txt to foo.tmp (with changes)
fsync foo.tmp
rename foo.tmp to foo.txt

foo.txt Old Data
(on disk)

New Data
(on disk)

Good Protocol
copy foo.txt to foo.tmp (with changes)
fsync foo.tmp
rename foo.tmp to foo.txt

foo.txt

New Data
(on disk)

(on disk)

Local FS Comparison
FFS+Journal:
 - must write data twice (writes expensive)
 - can put data exactly where we like (reads cheaper)
!

LFS:
 - all writes sequential (writes cheaper)
 - reads may be very random (reads expensive)

Local FS Comparison
In what ways is FFS more complex?
!

In what ways is LFS more complex?
!

Compare group descriptor to segment summary.
!

LFS: why don’t we need to update root inode upon
updating any file?

Distributed Systems

OSTEP Definition
Def: more than 1 machine
!

Examples:
 - client/server: web server and web client
 - cluster: page rank computation
!

Other courses:
CS 640: Networking
CS 739: Distributed Systems

Why Go Distributed?
More compute power
!

More storage capacity
!

Fault tolerance
!

Data sharing

New Challenges
System failure: need to worry about partial failure.
!

Communication failure: links unreliable

Communication
All communication is inherently unreliable.
!

Need to worry about:
 - bit errors
 - packet loss
 - node/link failure

Why are network sockets
less reliable than pipes?

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

what if router’s
buffer is full?

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

what if B’s
buffer is full?

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

?

From A’s view, network and
B are largely a black box.

Overview
Raw messages
!
Reliable messages
!
OS abstractions
 - virtual memory
 - global file system
!
Programming-languages abstractions
 - remote procedure call

Raw Messages: UDP
API:
 - reads and writes over socket file descriptors
 - messages sent from/to ports to target a process on machine
!
Provide minimal reliability features:
 - messages may be lost
 - messages may be reordered
 - messages may be duplicated
 - only protection: checksums

Raw Messages: UDP
Advantages
 - lightweight
 - some applications make better reliability decisions
 themselves (e.g., video conferencing programs)
!
Disadvantages
 - more difficult to write application correctly

Overview
Raw messages
!
Reliable messages
!
OS abstractions
 - virtual memory
 - global file system
!
Programming-languages abstractions
 - remote procedure call

Strategy
Using software, build reliable, logical connections
over unreliable connections.
!

Strategies:
 - acknowledgment

ACK
Sender

[send message]
!
!

[recv ack]

Receiver
!

[recv message]
[send ack]

Sender knows message was received.

ACK
Sender

[send message]
!
!

Receiver

Sender misses ACK… What to do?

Strategy
Using software, build reliable, logical connections
over unreliable connections.
!

Strategies:
 - acknowledgment

Strategy
Using software, build reliable, logical connections
over unreliable connections.
!

Strategies:
 - acknowledgment
 - timeout

Timeout
Sender

[send message]
!
!

Receiver

Timeout
Sender

[send message]
[start timer]

!

Receiver

Timeout
Sender

[send message]
[start timer]

!
… waiting for ack …

Receiver

Timeout
Sender

[send message]
[start timer]

!
… waiting for ack …

!
[timer goes off]

Receiver
!
!
!
!
!

Timeout
Sender

[send message]
[start timer]

!
… waiting for ack …

!
[timer goes off]
[send message]

!
!

[recv ack]

Receiver
!
!
!
!
!
!
!

[recv message]
[send ack]

Timeout: Issue 1
How long to wait?

Timeout: Issue 1
How long to wait?
!

Too long: system feels unresponsive
!

Too short: messages needlessly re-sent
!

Messages may have been dropped due to
overloaded server. Aggressive clients worsen this.

Timeout: Issue 1
How long to wait?
!

One strategy: be adaptive.
!

Adjust time based on how long acks usually take.
!

For each missing ack, wait longer between retries.

Timeout: Issue 2
What does a lost ack really mean?

Sender
[send message]

!
!

[timout]

Receiver
!
!
!
!
!

Sender
[send message]

!
!

[timout]

Receiver
!

[recv message]
[send ack]

C
as

e
1

C
as

e
2

How can sender
tell between these
two cases?

Timeout: Issue 2
What does a lost ack really mean?
!

ACK: message received exactly once
!

No ACK: message received at most once

Timeout: Issue 2
What does a lost ack really mean?
!

ACK: message received exactly once
!

No ACK: message received at most once
!

What if message is command to increment counter?

Proposed Solution

Sender could send an AckAck so receiver knows
whether to retry sending an Ack.
!

Sound good?

Aside: Two Generals’ Problem
general 1 general 2

enemy

Aside: Two Generals’ Problem
general 1 general 2

enemy

Suppose a generals agree after N messages.
Did the arrival of the N’th message change anybodies decision?

Aside: Two Generals’ Problem
general 1 general 2

enemy

Suppose a generals agree after N messages.
Did the arrival of the N’th message change anybodies decision?
 - if yes: then what if the N’th message had been lost?
 - if no: then why bother sending N messages?

Timeout: Issue 2
What does a lost ack really mean?
!

ACK: message received exactly once
!

No ACK: message received at most once
!

What if message is command to increment counter?

Strategy
Using software, build reliable, logical connections
over unreliable connections.
!

Strategies:
 - acknowledgment
 - timeout

Strategy
Using software, build reliable, logical connections
over unreliable connections.
!

Strategies:
 - acknowledgment
 - timeout
 - remember sent messages

Receiver Remembers Messages

Sender
[send message]

!
!
!
!

[timout]
[send message]

!
!

[recv ack]

Receiver
!

[recv message]
[send ack]

!
!
!
!

[ignore message]
[send ack]

Receiver Remembers Messages

Sender
[send message]

!
!
!
!

[timout]
[send message]

!
!

[recv ack]

Receiver
!

[recv message]
[send ack]

!
!
!
!

[ignore message]
[send ack]

how do we
know to ignore?

Solutions
Solution 1: remember every message ever sent.

Solutions
Solution 1: remember every message ever sent.
!

Solution 2: sequence numbers
 - give each message a seq number
 - receiver knows all messages before an N have
 been seen
 - receiver remembers messages sent after N

TCP
Most popular protocol based on seq nums.
!

Also buffers messages so they arrive in order.
!

Timeouts are adaptive.

Overview
Raw messages
!
Reliable messages
!
OS abstractions
 - virtual memory
 - global file system
!
Programming-languages abstractions
 - remote procedure call

Virtual Memory
Inspiration: threads share memory
!

Idea: processes on different machines share mem

Virtual Memory
Inspiration: threads share memory
!

Idea: processes on different machines share mem
!

Strategy:
 - a bit like swapping we saw before
 - instead of swap to disk, swap to other machine
 - sometimes multiple copies may be in memory
 on different machines

PFN valid present
- 0 -
- 0 -
- 0 -
- 0 -

5 6 7 8

……

PFN valid present
- 0 -
- 0 -
- 0 -
- 0 -

21 22 23 24

……

Process on Machine A Process on Machine B

PFN valid present
- 0 -
- 1 0
- 1 0
- 1 0

Process on Machine A

5 6 7 8

……

PFN valid present
- 0 -
- 1 0
- 1 0
- 1 0

Process on Machine B

21 22 23 24

……

map 3-page region into both memories.

PFN valid present
- 0 -
5 1 1
7 1 1
8 1 1

Process on Machine A

X Y Z
5 6 7 8

……

PFN valid present
- 0 -
- 1 0
- 1 0
- 1 0

Process on Machine B

21 22 23 24

……

A writes X,Y,Z

PFN valid present
- 0 -
5 1 1
7 1 1
8 1 1

Process on Machine A

X Y Z
5 6 7 8

……

PFN valid present
- 0 -
23 1 1
- 1 0
- 1 0

Process on Machine B

X
21 22 23 24

……

B reads 1st page

PFN valid present
- 0 -
5 1 1
7 1 1
8 1 1

Process on Machine A

X Y Z
5 6 7 8

……

PFN valid present
- 0 -
23 1 1
22 1 1
- 1 0

Process on Machine B

Y X
21 22 23 24

……

B reads 2st page

PFN valid present
- 0 -
- 1 0
7 1 1
8 1 1

Process on Machine A

Y Z
5 6 7 8

……

PFN valid present
- 0 -
23 1 1
22 1 1
- 1 0

Process on Machine B

Y X’
21 22 23 24

……

B writes X’ to 1st page

PFN valid present
- 0 -
6 1 1
7 1 1
8 1 1

Process on Machine A

X’ Y Z
5 6 7 8

……

PFN valid present
- 0 -
23 1 1
22 1 1
- 1 0

Process on Machine B

Y X’
21 22 23 24

……

A reads 1st page

Virtual Memory Problems
What if a machine crashes?
 - mapping disappears in other machines
 - how to handle?
!

Performance?
 - when to prefetch?
 - loads/stores expected to be fast
!

DSM (distributed shared memory) not used today.

Global File System
Advantages
 - file access is already expected to be slow
 - use common API
 - no need to modify applications (sorta true,
 flocks over NFS don’t work)
!

Disadvantages
 - doesn’t always make sense, e.g., for video app

Overview
Raw messages
!
Reliable messages
!
OS abstractions
 - virtual memory
 - global file system
!
Programming-languages abstractions
 - remote procedure call

RPC
Remote Procedure Call.
!

What could be easier than calling a function?
!

Strategy: create wrappers so calling a function on
another machine feels just like calling a local
function.
!

This abstraction is very common in industry.

RPC
int main(…) {
!
}

Machine A
int foo(char *msg) {
 …
}

Machine B

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Actual calls.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

What it feels like for programmer.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Wrappers.

client
wrapper

server
wrapper

RPC Tools
RPC packages help with this with two components.
!

(1) Stub generation
 - create wrappers automatically
!

(2) Runtime library
 - thread pool
 - socket listeners call functions on server

RPC Tools
RPC packages help with this with two components.
!

(1) Stub generation!
 - create wrappers automatically
!

(2) Runtime library
 - thread pool
 - socket listeners call functions on server

Stub Generation
Many tools will automatically generate wrappers:
 - rpcgen
 - thrift
 - protobufs
!

Programmer fills in generated stubs.

Wrapper Generation
Wrappers must do conversions:
 - client arguments to message
 - message to server arguments
 - server return to message
 - message to client return
!
Need uniform endianness (wrappers do this).
!
Conversion is called marshaling/unmarshaling,
or serializing/deserializing.

Wrapper Generation: Pointers
Why are pointers problematic?

Wrapper Generation: Pointers
Why are pointers problematic?
!

The addr passed from the client will not be valid
on the server.
!

Solutions?

Wrapper Generation: Pointers
Why are pointers problematic?
!

The addr passed from the client will not be valid
on the server.
!

Solutions?
 - smart RPC package: follow pointers
 - distribute generic data structs with RPC package

RPC Tools
RPC packages help with this with two components.
!

(1) Stub generation!
 - create wrappers automatically
!

(2) Runtime library
 - thread pool
 - socket listeners call functions on server

RPC Tools
RPC packages help with this with two components.
!

(1) Stub generation
 - create wrappers automatically
!

(2) Runtime library!
 - thread pool
 - socket listeners call functions on server

Runtime Library
Design decisions:
!

How to serve calls?
 - usually with a thread pool
!

What underlying protocol to use?
 - usually UDP

Sender
[call]

[tcp send]
!
!
!
!
!
!
!

[recv]
[ack]

Receiver
!
!

[recv]
[ack]

[exec call]
…
!

[return]
[tcp send]

!
!

RPC over TCP

Sender
[call]

[tcp send]
!
!
!
!
!
!
!

[recv]
[ack]

Receiver
!
!

[recv]
[ack]

[exec call]
…
!

[return]
[tcp send]

!
!

RPC over TCP

Why wasteful?

RPC over UDP
Strategy: use function return as implicit ACK.
!

Piggybacking technique.
!

What if function takes a long time?
 - then send a separate ACK

Conclusion
Many communication abstraction possible:
!

Raw messages (UDP)
Reliable messages (TCP)
Virtual memory (OS)
Global file system (OS)
Function calls (RPC)

Announcements
Thursday discussion
 - review midterm 2.
!
Office hours
 - today at 1pm, in office
!

