
[537] Locks
Chapters 28
Tyler Harter

10/06/14

Review: Threads+Locks

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…

CODE HEAPVirt Mem
(PageDir B)

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir B)

IP IPSP SP

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir B)

IP IPSP SP

Which registers store the
same/different values across threads?

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir B)

IP IPSP SP

STACK 1 STACK 2

Context Switch
Why is switching between threads cheaper
than switching between processes?
!

Why is switching between threads not free?

Why is concurrency hard?
H/W caches
!

OS scheduler

Why is concurrency hard?
H/W caches
!

OS scheduler

CPU 1 CPU 2 RAM

TLB:
…

Data Cache:

TLB:
…

Data Cache: A

CPU 1 CPU 2 RAM
AData Cache:Data Cache:

CPU 2: memory load returns A

A
TLB:
…

TLB:
…

CPU 1 CPU 2 RAM
AData Cache:Data Cache:

CPU 2: memory load returns A!
CPU 1: memory store of A’

AA’
TLB:
…

TLB:
…

CPU 1 CPU 2 RAM
AData Cache:Data Cache:

CPU 2: memory load returns A!
CPU 1: memory store of A’
CPU 2: memory load returns A

AA’
TLB:
…

TLB:
…

CPU 1 CPU 2 RAM
AData Cache:Data Cache:

AA’
TLB:
…

TLB:
…

Updates from one critical section must be visible to others.
CPU needs to know when to flush caches (or similar).

xchg: atomic exchange, or test-and-set
//
// xchg(int *addr, int newval)
// return what is pointed to by addr
// at the same time, store newval into addr
//
static inline uint
xchg(volatile unsigned int *addr, unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" :
 "+m" (*addr), "=a" (result) :
 "1" (newval) : "cc");
 return result;
}

xchg: atomic exchange, or test-and-set
//
// xchg(int *addr, int newval)
// return what is pointed to by addr
// at the same time, store newval into addr
//
static inline uint
xchg(volatile unsigned int *addr, unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" :
 "+m" (*addr), "=a" (result) :
 "1" (newval) : "cc");
 return result;
}

memory barrier

Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 xchg(lock, 0);
}

Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Works on newer x86 processors.
Not on all CPUs (sometimes due to CPU bugs!)

Why is concurrency hard?
H/W caches
!

OS scheduler

Why is concurrency hard?
H/W caches [552 and other courses]
!

OS scheduler [537’s primary focus]

What if multiple threads run this?

 for (i = 0; i < max; i++) {
 balance = balance + 1; // shared: only one
 }

Balance Adder
Thread 1! ! ! ! ! Thread 2!
 mov 0x123, %eax
 add %0x1, %eax
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123
 mov %eax, 0x123

How much is added?

Balance Adder
Thread 1! ! ! ! ! Thread 2!
 mov 0x123, %eax (eax = 100)
 add %0x1, %eax (eax = 101)
mov 0x123, %eax (eax = 100)
add %0x1, %eax (eax = 101)
mov %eax, 0x123 (0x123 = 101)
 mov %eax, 0x123 (0x123 = 101)

How much is added?

Balance Adder
Thread 1! ! ! ! ! Thread 2!
 mov 0x123, %eax
 add %0x1, %eax
 mov %eax, 0x123
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

How much is added?

Balance Adder
Thread 1! ! ! ! ! Thread 2!
 mov 0x123, %eax (eax = 100)
 add %0x1, %eax (eax = 101)
 mov %eax, 0x123 (0x123 = 101)
mov 0x123, %eax (eax = 101)
add %0x1, %eax (eax = 102)
mov %eax, 0x123 (0x123 = 102)

How much is added?

Balance Adder
Thread 1! ! ! ! ! Thread 2!
 mov 0x123, %eax
 add %0x1, %eax
 mov %eax, 0x123
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

Need atomic sections that don’t run
simultaneously, even on different CPUs!

Worksheet

Problem 1.

Worksheet

Problem 1.
!

Thread 1! ! ! ! ! ! ! ! Thread 2 ! ! ! !
while(*lock == 1)!
! ! ! ! ! ! ! ! ! ! ! ! while(*lock == 1)!
! ! ! ! ! ! ! ! ! ! ! ! *lock = 1!
*lock = 1

Using Locks

Worksheet

What about problems more complex than “balance”?
!

Problem 2 code.
!

Linked-List Race
Thread 1 Thread 2
new->key = key
new->next = L->head
 new->key = key
 new->next = L->head
 L->head = new
L->head = new

Linked-List Race

Both point to old head.

Thread 1 Thread 2
new->key = key
new->next = L->head
 new->key = key
 new->next = L->head
 L->head = new
L->head = new

Linked-List Race

Both point to old head.
Only one (which one?) can be the new head.

Thread 1 Thread 2
new->key = key
new->next = L->head
 new->key = key
 new->next = L->head
 L->head = new
L->head = new

head T1’s!
node

old!
head n3 n4 …

T2’s!
node

Thread 1 Thread 2
new->key = key
new->next = L->head
 new->key = key
 new->next = L->head
 L->head = new
L->head = new

head T1’s!
node

old!
head n3 n4 …

[orphan node]

Thread 1 Thread 2
new->key = key
new->next = L->head
 new->key = key
 new->next = L->head
 L->head = new
L->head = new

T2’s!
node

Worksheet

What about problems more complex than “balance”?
!

Problem 2 code.
!

Add locks to linked list!

Worksheet

What about problems more complex than “balance”?
!

Problem 2 code.
!

Add locks to linked list!
 - talk about style (e.g., List_Lookup and __List_Lookup)

Building Locks

Lock Goals

Correctness
!

Fairness
!

Performance

Lock Goals

Correctness [need mutual exclusion between critical sections]
!

Fairness
!

Performance

Peterson’s Algorithmint flag[2];
int turn; !
void init() {
 flag[0] = flag[1] = 0; // 1 implies thread want to grab lock
 turn = 0; // whose turn? (thread 0 or 1)
} !
void lock() {
 flag[self] = 1; // self: thread ID of caller
 turn = 1 - self; // make it other thread’s turn
 while(flag[1-self] && (turn == 1 - self))
 ; // spin
} !
void unlock() {
 flag[self] = 0;
}

Peterson’s Algorithmint flag[2];
int turn; !
void init() {
 flag[0] = flag[1] = 0; // 1 implies thread want to grab lock
 turn = 0; // whose turn? (thread 0 or 1)
} !
void lock() {
 flag[self] = 1; // self: thread ID of caller
 turn = 1 - self; // make it other thread’s turn
 while(flag[1-self] && (turn == 1 - self))
 ; // spin
} !
void unlock() {
 flag[self] = 0;
}

doesn’t work on modern hardware
(cache-consistency issues)

Worksheet
Build locks using other primitives (problem 3)
!

(a) test-and-set (already done)
!

(b) compare-and-swap
!

(c) load-linked / store-conditional

Lock Goals

Correctness [need mutual exclusion between critical sections]
!

Fairness
!

Performance

Lock Goals

Correctness [need mutual exclusion between critical sections]
!

Fairness [does each thread get its turn to hold the lock?]
!

Performance

spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock

Being Fair: Ticket Locks
Idea: reserve your turn to use a lock.
!
Spin until it’s you turn.
!
Use new primitive, fetch-and-add:
!
int FetchAndAdd(int *ptr) {
 int old = *ptr;
 *ptr = old + 1;
 return old;
}

0
1
2
3
4
5
6
7

ticket
turn

0
1
2
3
4
5
6
7

ticket

turnA lock(): gets ticket 0, runs

0
1
2
3
4
5
6
7

ticket

turnA lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1

0
1
2
3
4
5
6
7

ticket

turnA lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2

0
1
2
3
4
5
6
7

ticket

turn
A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs

0
1
2
3
4
5
6
7

ticket

turn
A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs
A lock(): gets ticket 3, spins until turn=3

0
1
2
3
4
5
6
7

ticket

turn

A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs
A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++
C runs

0
1
2
3
4
5
6
7

ticket

turn

A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs
A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++
C runs
C unlock(): turn++
A runs

0
1
2
3
4
5
6
7

ticket
turn

A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs
A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++
C runs
C unlock(): turn++
A runs
A unlock(): turn++

0
1
2
3
4
5
6
7

ticket

turn

A lock(): gets ticket 0, runs
B lock(): gets ticket 1, spins until turn=1
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++
B runs
A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++
C runs
C unlock(): turn++
A runs
A unlock(): turn++
C lock(): gets ticket 4, runs

Lock Goals

Correctness [need mutual exclusion between critical sections]
!

Fairness [does each thread get its turn to hold the lock?]
!

Performance

Lock Goals

Correctness [need mutual exclusion between critical sections]
!

Fairness [does each thread get its turn to hold the lock?]
!

Performance [how to minimize switch overheads and spin waste]

Spinlock Performance
Fast when…
 - many CPUs
 - locks held a short time
 - advantage: avoid context switch
!
Slow when…
 - one CPU
 - locks held a long time
 - disadvantage: spinning is wasteful

spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B instead of A
even though B is waiting for A

Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 yield(); // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 yield(); // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Pro: we won’t waste cycles on spin now
Con: we may have to context switch many times to get the right thread

Queue Locks
Idea: put threads on queue.
!

Tell kernel don’t schedule queued threads.
!

Upon unlock, tell kernel it can run thread(s) again.

Queue Locks
Idea: put threads on queue.
!

Tell kernel don’t schedule queued threads.
!

Upon unlock, tell kernel it can run thread(s) again.
!

Hybrid approach: spin a while, then queue self
 - called “two-phase locks”

In-Kernel locking
Sometimes interrupt handlers have no context!
!

Queue locks cannot work. Why?
!

Approach: cooperative scheduling.
 - use spin locks, disable interrupts

Locks Summary
Workload: how many threads, cores? Lock length?

Lock library: who to give lock? How to wait?

Metric: fairness, performance

Lock “algebra”, given 2 variables, find the 3rd:

f(W, L) = M

Announcements
p2b due this Friday.
!
Exam next Friday.
 - Oct 17, 7-9pm, in CHEM 1351.
 - Covers all material until that day.
 - Read OSTEP!
!
Office hours today @ ~9:15am in Galapagos lab.
!
Wed lecture: cloud computing

