1537] Locks

Chapters 28
Tyler Harter
10/06/14

Review: Threads+Locks

CPU 1 CPU 2 RAM

running running PageDir A
thread 1 thread 2
PageDir B

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

| I I

Virt Mem

agenir) IR

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

| I I

Virt Mem

agenir) IR

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

| I I

Which registers store the
same/different values across threads”?
Virt Mem

agenir) IR

CPU 1 CPU 2 RAM

running running
thread 1 thread 2
' PageDir B

-‘.‘- |

AN

Virt Mem
(PageDir B)

Context Switch

Why Is switching between threads cheaper
than switching between processes?

Why is switching between threads not free?

Why Is concurrency hard?

H/W caches

OS scheduler

Why Is concurrency hard?

H/W caches

OS scheduler

CPU 1 CPU 2 RAM

Data Cache: Data Cache:

TLB: TLB:

CPU 1 RAM

Data Cache: Data Cache:

TLB: TLB:

CPU 2: memory load returns A

Data Cache: Data Cache:

TLB: TLB:

CPU 2: memory load returns A
CPU 1: memory store of A’

Data Cache: Data Cache:

TLB: TLB:

PU 2: memory load returns A
- memory store of A’
PU 2: memory load returns A

O OO
Cu

Data Cache: Data Cache:

TLB: TLB:

Updates from one critical section must be visible to others.
CPU needs to know when to flush caches (or similar).

Xchg: atomic exchange, or test-and-set

//
// xchg(int *xaddr, int newval)

// return what 1s pointed to by addr
// at the same time, store newval into addr
//
static inline uilnt
xchg(volatile unsigned int *xaddr, unsigned int newval) {
uint result;
asm volatile("lock; xchgl %0, %1" :
Yam' (kaddr), "=a" (result)
1" (newval) : "cc");
return result;

Xchg: atomic exchange, or test-and-set

//
// xchg(int *addr, int newval)

// return what 1s pointed to by addr

// at the same time, store newval i1nto addr

//

static inline uint

xchg(volatile unsigned int *xaddr, unsigned int newval) {

asm volatile(xchgl %0, %1'" :

xaddr), "=a" (result)
ewval) @ "cc'');

return result:

memory barrier

Test-and-set Spinlock

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)

’

void (volatile unsigned int *xlock) {
xchg(lock, 0);
s

Test-and-set Spinlock (optimized)

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)

’

void (volatile unsigned int *xlock) {
xlock = 0;
s

Test-and-set Spinlock (optimized)

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)
s // spin

void (volatile unsigned int *xlock) {
xlock = 0;
s

Works on newer x86 processors.
Not on all CPUs (sometimes due to CPU bugs!)

Why Is concurrency hard?

H/W caches

OS scheduler

Why Is concurrency hard?

H/W caches [552 and other courses]

OS scheduler [537’s primary focus]

What if multiple threads run this”

for (i = 0; 1 < max; i++) {
balance = balance + 1;
+

Balance Adder

Thread 1 Thread 2
mov 0x123, %eax

add %0x1, %eax
mov 0x123, %eax

add %0x1, %eax
MoV %eax, 0x123

mov %eax, 0x123

How much is added?

Balance Adder

Thread 1 Thread 2

MoV 0x123, Y%eax (eax = 100)
add %0x1, %eax (eax = 101)
MoV Ox123, %eax (eax = 100)
add %0x1, %eax (eax = 101)

MoV %eax, Ox123 (0x123 = 101)
MoV %eax, Ox123 (0x123 = 101)

How much is added?

Balance Adder

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax

mov %eax, 0x123
MoV 0x123, %eax

add %0x1, %eax
MoV %eax, 0x123

How much is added?

Balance Adder

Thread 1 Thread 2
mov 0x123, %eax (eax = 100)
add %0x1, %eax (eax = 101)

MoV %eax, Ox123 (0x123 = 101)
MoV Ox123, %eax (eax = 101)

add %0x1, %eax (eax = 102)
MoV Y%eax, Ox123 (0x123 = 102)

How much is added?

Balance Adder

Thread 1 Thread 2

mov 0x123, %eax
add %0x1, %eax
MoV %eax, 0x123

MoV 0x123, %eax
add %0x1, %eax
MoV %eax, 0x123

Need atomic sections that don't run
simultaneously, even on different CPUs!

Worksheet

Problem 1.

Worksheet

Problem 1.
Thread 1 Thread 2
while(*lock == 1)
while(*lock == 1)
*lock = 1

*lock = 1

Using Locks

Worksheet

What about problems more complex than “balance”™?

Problem 2 code.

L Inked-List Race

Thread 1 Thread 2
new->key = key
new->next = L->head

new->key = key
new->next = L->head

L->head = new
L->head = new

L Inked-List Race

Thread 1 Thread 2
new->key = key
new->next = L->head

new->key = key
new->next = L.->head

L->head = new
L->head = new

Both point to old head.

L Inked-List Race

Thread 1 Thread 2
new->key = key
new->next = L->head

new->key = key
new->next = L.->head

L->head = new
L->head = new

Both point to old head.
Only one (which one”) can be the new head.

Thread 1 Thread 2
new->key = key
new->next = L->head

new->key = key
new->next = L->head

| ->head = new
L->head = new

Thread 1 Thread 2
new->key = key
new->next = L->head

new->key = key
new->next = L->head

| ->head = new
L->head = new

[orphan node]

Worksheet

What about problems more complex than “balance”™?

Problem 2 code.

Worksheet

What about problems more complex than “balance”™?

Problem 2 code.

Bullding Locks

L ock (Goals

Correctness
Falrness

Performance

L ock (Goals

Correctness [need mutual exclusion between critical sections]
Fairness

Performance

int flag|2];
Nt turn;

void init() {
flag[0] = flag[1] = 0; // 1 implies thread want to grab lock
turn = 0; /[whose turn? (thread O or 1)

}

void lock() {
flag[self] = 1; /] self: thread |ID of caller
turn = 1 - self; // make it other thread’s turn

while(flag[1-self] && (turn == 1 - self))
- // spin
J
void unlock() {
flag[self] = 0;

}

int flag|2];
Nt turn;

void init() {
flag[0] = flag[1] = 0; // 1 implies thread want to grab lock
turn = 0; /[whose turn? (thread O or 1)

}

void lock() {
flag[self] = 1; /] self: thread ID of caller
turn = 1 - self; // make it other thread’s turn

while(flag[1-self] && (turn == 1 - self))
- // spin
J
void unlock() {
flag[self] = 0;

}

Worksheet

Build locks using other primitives (problem 3)
(a) test-and-set (already done)
(b) compare-and-swap

(c) load-linked / store-conditional

L ock (Goals

Correctness [need mutual exclusion between critical sections]
Fairness

Performance

L ock (Goals

Correctness [need mutual exclusion between critical sections]
Falrness [does each thread get its turn to hold the lock?]

Performance

Basic Spinlocks are Untair

unlock lock unlock lock unlock lock unlock lock

TN\ Lo \/ e \Vosgne \/
! «spin+ «spin+ «spin—+> «spin+

0 20 40 60 80 100 120 140 160

Being Fair: Ticket Locks

ldea: reserve your turn to use a lock.
Spin until it's you turn.
Use new primitive, fetch-and-add:

int FetchAndAdd(int xptr) {
int old = *xptr;
xptr = old + 1;
return old;

}

+«—{urn
«—ticket

<«—t{urn

A lock(): gets ticket O, runs

+«—ticket

<« {urn

A lock(): gets ticket O, runs
B lock(): gets ticket 1, spins until turn="

+«— ticket

O W >

OC
OC
OC

<(): gets t
<(): gets t

<(): gets t

IC
IC
IC

et O, runs
ket 1, spins until turn="

Ket 2, spins until turn=2

<« {urn

«—ticket

A lock(): gets ticket O, runs

B lock(): gets ticket 1, spins until turn="
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++

B runs

<« {urn

«—ticket

A lock(): gets ticket O, runs 0
B lock(): gets ticket 1, spins until turn=" 1 [tumn
C lock(): gets ticket 2, spins until turn=2 >
A unlock(): turn++
B runs 3
A lock(): gets ticket 3, spins until turn=3 4 |« ticket
5
6
V4

A lock(): gets ticket O, runs
B lock(): gets ticket 1, spins until turn="1
g

C lock(): gets ticket 2, spins until turn=2 «—turn
A unlock(): turn++
B runs

<+«— ticket

A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++
C runs

NO|O|~A|WIN|=|O

A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++

C runs

C unlock(): turn++

A runs

A lock(): gets ticket O, runs 0

B lock(): gets ticket 1, spins until turn=" 1

C lock(): gets ticket 2, spins until turn=2 >

A unlock(): turn++ «—turn
3

B runs
4 J—ticket
5
6
7/

A lock(): gets ticket O, runs

B lock(): gets ticket 1, spins until turn="
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++

B runs

A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++

C runs

C unlock(): turn++

A runs

A unlock(): turn++

<+—turn
+—ticket

NO|O|~A|WIN|=|O

A lock(): gets ticket O, runs

B lock(): gets ticket 1, spins until turn="
C lock(): gets ticket 2, spins until turn=2
A unlock(): turn++

B runs

A lock(): gets ticket 3, spins until turn=3
B unlock(): turn++

C runs

C unlock(): turn++

A runs

A unlock(): turn++

C lock(): gets ticket 4, runs

<« {urn

+«—ticket

NO|O|~A|WIN|=|O

L ock (Goals

Correctness [need mutual exclusion between critical sections]
Falrness [does each thread get its turn to hold the lock?]

Performance

L ock (Goals

Correctness [need mutual exclusion between critical sections]
Falrness [does each thread get its turn to hold the lock?]

Performance [how to minimize switch overheads and spin waste]

Spinlock Performance

Fast when...

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when...

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful

CPU Scheduler is Ignorant

Iock LﬂﬂOCk Iock
«spin-+» +«sSpin-» «Spin-»>

0 100 120 140 160

CPU scheduler may run B instead of A
even though B is waiting for A

Test-and-set Spinlock

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)
s // spin

void (volatile unsigned int *xlock) {
xlock = 0;
s

Test-and-set Spinlock

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)
yield();

void (volatile unsigned int *xlock) {
xlock = 0;
s

Test-and-set Spinlock

void (volatile unsigned int xlock) {
while (xchg(lock, 1) == 1)
yield();

void (volatile unsigned int *xlock) {
xlock = 0;
s

Pro: we won't waste cycles on spin now
. we may have to context switch many times to get the right thread

Queue Locks

|dea: put threads on queue.
Tell kernel don't schedule queued threads.

Upon unlock, tell kernel it can run thread(s) again.

Queue Locks

|dea: put threads on queue.
Tell kernel don't schedule queued threads.

Upon unlock, tell kernel it can run thread(s) again.

vorid approach: spin a while, then queue selt
- called "two-phase locks”

INn-Kernel locking

Sometimes interrupt handlers have no context!
Queue locks cannot work. Why?

Approach: cooperative scheduling.
- use spin locks, disable interrupts

| ocks Summary

Workload: how many threads, cores”? Lock length”
Lock library: who to give lock”? How to wait?

Metric: fairness, performance

Lock “algebra”, given 2 variables, find the 3rd:

(W, L) =M

Announcements

p2b due this Friday.

Exam next Friday.

- Oct 17, 7-9pm, in CHEM 1351.

- Covers all material until that day.
- Read OSTEP!

Office hours today @ ~9:15am in Galapagos lab.

Wed lecture: cloud computing

