
[537] Locks and Condition Variables
Tyler Harter

10/13/14

P2B recap
Remember non-determinism makes testing harder!
!

Build incrementally.
!

Separate policy from mechanism.

Bad
scheduler() {

…
lots of logic for choosing process
…
proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&cpu->scheduler, proc->context);
switchkvm();
…

}

policy

mechanism

Worse
scheduler() {

…
lots of logic for choosing process
…
proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&cpu->scheduler, proc->context);
switchkvm();
…

}

copy this many places…

struct proc *choose_proc() {
lots of logic for choosing process

}
!
scheduler() {

…
p = choose_proc();
if (p) {

proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&cpu->scheduler, proc->context);
switchkvm();

}
…

}

Better: separation
 of policy/mechanism

Review: using and
designing basic locks

Problem 1
Do it.

Lock Evaluation
How to tell if a lock implementation is good?

Lock Evaluation
How to tell if a lock implementation is good?
!
Fairness: does everybody get a chance to use the lock?
!
Performance!
 - high contention (many threads per CPU, each contending)
 - low contention (fewer threads, fewer locking attempts)

Lock Evaluation
How to tell if a lock implementation is good?
!
Fairness: does everybody get a chance to use the lock?
!
Performance!
 - high contention (many threads per CPU, each contending)
 - low contention (fewer threads, fewer locking attempts)

which are spinlocks better for?

turn = 6!
ticket = 6

0
1
2

3

7
6
5

4
Ticket Lock Review

turn = 6!
ticket = 6

0
1
2

3

7
6
5

4

turn = 6!
ticket = 7

A lock(): gets ticket 6, runs

0
1
2

3

7
6
5

4

A

turn = 6!
ticket = 0

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7

0
1
2

3

7
6
5

4

A
B

turn = 6!
ticket = 1

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0 0

1
2

3

7
6
5

4

A
B C

turn = 7!
ticket = 1

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs

0
1
2

3

7
6
5

4

B C

turn = 7!
ticket = 2

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs
A lock(): gets ticket 1, spins until turn=1
!

0
1
2

3

7
6
5

4

A
B C

turn = 0!
ticket = 2

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs
A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++
C runs

0
1
2

3

7
6
5

4

A
C

turn = 1!
ticket = 2

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs
A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++
C runs
C unlock(): turn++
A runs

0
1
2

3

7
6
5

4

A

turn = 2!
ticket = 2

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs
A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++
C runs
C unlock(): turn++
A runs
A unlock(): turn++

0
1
2

3

7
6
5

4

turn = 2!
ticket = 3

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket 0, spins until turn=0
A unlock(): turn++
B runs
A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++
C runs
C unlock(): turn++
A runs
A unlock(): turn++
C lock(): gets ticket 2, runs

0
1
2

3

7
6
5

4

C

Problem 2
Do it.

Ticket Lock (1)
typedef struct __lock_t {
 int ticket;
 int turn;
}
!
void lock_init(lock_t *lock) {
 lock->ticket = 0;
 lock->turn = 0;
}

void acquire(lock_t *lock) {
 int myturn = FAA(&lock->ticket);
 while(lock->turn != myturn)
 ; // spin
}
!
void release (lock_t *lock) {
 FAA(&lock->turn);
}

Ticket Lock (2)
typedef struct __lock_t {
 int ticket;
 int turn;
}
!
void lock_init(lock_t *lock) {
 lock->ticket = 0;
 lock->turn = 0;
}

void acquire(lock_t *lock) {
 int myturn = FAA(&lock->ticket);
 while(lock->turn != myturn)
 yield(); // spin
}
!
void release (lock_t *lock) {
 FAA(&lock->turn);
}

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Spinlock Performance

Waste…
!

Without yield: O(threads * context_switch)
!

With yield: O(threads * time_slice)

Spinlock Performance

Waste…
!

Without yield: O(threads * time_slice)
!

With yield: O(threads * context_switch)
!

So even with yield, we’re slow with high contention.

Problem 3
Do it.

Problem 3
Do it.
!
(a) This spins on guard — why? (what is protected? what is not?)
(b) This still spins. Why is it better than a simple spin lock?
(c) In unlock, there is no setting of flag=0 when we unpark. Why?
(d) What is the race-condition bug in this code?

Race Condition
Thread 1! ! ! ! ! ! ! Thread 2!
if (lock->flag == 0)
queue_push(lock->q, gettid());
lock->guard = 0;
 while (xchg(&lock->guard, 1) == 1)
 if (queue_empty(lock->q))
 unpark(queue_pop(lock->q));
 lock->guard = 0;
park();

(in unlock)(in lock)

Incorrect Code
void lock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (lock->flag == 0) { // lock is free: grab it!
 lock->flag = 1;
 lock->guard = 0;
 } else { // lock not free: sleep
 queue_push(lock->q, gettid());
 lock->guard = 0;
 park(); // put self to sleep
 }
}

Incorrect Code
void lock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (lock->flag == 0) { // lock is free: grab it!
 lock->flag = 1;
 lock->guard = 0;
 } else { // lock not free: sleep
 queue_push(lock->q, gettid());
 lock->guard = 0;
 park(); // put self to sleep
 }
}

Race!

Incorrect Code
void lock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (lock->flag == 0) { // lock is free: grab it!
 lock->flag = 1;
 lock->guard = 0;
 } else { // lock not free: sleep
 queue_push(lock->q, gettid());
 lock->guard = 0;
 park(); // put self to sleep
 }
}

Correct Code
void lock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (lock->flag == 0) { // lock is free: grab it!
 lock->flag = 1;
 lock->guard = 0;
 } else { // lock not free: sleep
 queue_push(lock->q, gettid());
 setpark();
 lock->guard = 0;
 park(); // put self to sleep
 }
}

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, B, C, D
<empty>
<empty>

0 20 40 60 80 100 120 140 160

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

B, C, D
A
<empty>

0 20 40 60 80 100 120 140 160

A

lock

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C, D, A
B
<empty>

0 20 40 60 80 100 120 140 160

A

lock

B

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C, D, A

B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

D, A
C
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, C
D
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, C

B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C
A
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A
C
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C
A
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

B, D, C
A

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

B, D, C
A

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

D, C, A
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

B

lock

Condition Variables

Concurrency Objectives
Mutual exclusion (e.g., A and B don’t run at same time)
 - solved with locks
!
Ordering (e.g., B runs after A)
 - solved with condition variables

Ordering Example: Join
 pthread_t p1, p2;
 printf("main: begin [balance = %d]\n", balance);
 Pthread_create(&p1, NULL, mythread, "A");
 Pthread_create(&p2, NULL, mythread, "B");
 // join waits for the threads to finish
 Pthread_join(p1, NULL);
 Pthread_join(p2, NULL);
 printf("main: done\n [balance: %d]\n [should: %d]\n",
 balance, max*2);
 return 0;

Ordering Example: Join
 pthread_t p1, p2;
 printf("main: begin [balance = %d]\n", balance);
 Pthread_create(&p1, NULL, mythread, "A");
 Pthread_create(&p2, NULL, mythread, "B");
 // join waits for the threads to finish
 Pthread_join(p1, NULL);
 Pthread_join(p2, NULL);
 printf("main: done\n [balance: %d]\n [should: %d]\n",
 balance, max*2);
 return 0;

how to implement join?

Condition Variables
CV’s are more like channels than variables.
B waits for a signal on channel before running.
A sends signal when it is time for B to run.

Condition Variables
CV’s are more like channels than variables.
B waits for a signal on channel before running.
A sends signal when it is time for B to run.
!

A CV also has a queue of waiting threads.

Broken CV’s
wait(cond_t *cv)
 - puts caller to sleep (and on queue)
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

Broken CV’s
wait(cond_t *cv)
 - puts caller to sleep (and on queue)
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

when to call?

Way 1

if (!ready)
 wait(&cv);
!

lock(&mutex);
// critical section
unlock(&mutex);

Way 1

if (!ready)
 wait(&cv);
!

lock(&mutex);
// critical section
unlock(&mutex);

what if another thread
sets ready=1 here?

Way 2

lock(&mutex);
// critical section
if (!ready)
 wait(&cv);
unlock(&mutex);

Way 2

lock(&mutex);
// critical section
if (!ready)
 wait(&cv);
unlock(&mutex);

nobody can wake us up
because we hold mutex

Broken CV’s
wait(cond_t *cv)
 - puts caller to sleep
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

Correct CV’s
wait(cond_t *cv, mutex_t *lock)
 - assumes the lock is held when wait() is called
 - puts caller to sleep + releases the lock (atomically)
 - when awoken, reacquires lock before returning
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

Correct CV’s
wait(cond_t *cv, mutex_t *lock)
 - assumes the lock is held when wait() is called
 - puts caller to sleep + releases the lock (atomically)
 - when awoken, reacquires lock before returning
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

requires kernel
support!

Code Examples
NOTE: Handout reference defines CV’s.

CV’s in xv6 code
proc.c:
 - sleep() is like cond_wait()
 - wakeup() is like cond_signal()
!

Example use case:
 - piperead() and pipewrite() in pipe.c

Announcements
Exam this Friday.
 - Oct 17, 7-9pm, in CHEM 1351.
 - Covers all material until that day.
 - Read OSTEP!
!
Review this Wednesday.
 - Oct 15, 7-9pm, room TBD, come with questions!
!
p3a posted.
!
Office hours after class in Galapagos lab.

