1537| Locks and Condition Variables

Tyler Harter
10/13/14

P2B recap

Remember non-determinism makes testing harder!

Bulld iIncrementally.

Separate from mechanism.

Bad

scheduler() {

lots of logic for choosing process DO/ICY

proc = p;

switchuvm(p);

p->state = RUNNING;

swtch(&cpu->scheduler, proc->context): mechanism

switchkvm();

Worse

scheduler() {

lots of logic for choosing process

Proc = p,
switchuvm(p);

p->state = RUNNING; copy this many places...
swtch(&cpu->scheduler, proc->context);

switchkvm();

struct proc *choose_proc() {
lots of logic for choosing process

}

scheduler() { Better: separation

of policy/mechanism

o = choose_proc();

it (p) {
proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&cpu->scheduler, proc->context);
switchkvm();

}

using
designing

Problem 1

Do It.

L ock Evaluation

How to tell if a lock implementation is good?

L ock Evaluation

How to tell if a lock implementation is good?
Fairness: does everybody get a chance to use the lock?
Performance

- high contention (many threads per CPU, each contending)
- low contention (fewer threads, fewer locking attempts)

L ock Evaluation

How to tell if a lock implementation is good?
Fairness: does everybody get a chance to use the lock?

Performance
- high contention (many threads per CPU, each contending)
- low contention (fewer threads, fewer locking attempts)

which are spinlocks better for?

Ticket Lock Review

turn=6
ticket = ©

turn=6
ticket = ©

A lock(): gets ticket 6, runs

turn=6
ticket =7

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7

turn=6
ticket = 0O

O WX

OC
OC
OC

<(): gets tic
<(): gets tic

<(): gets tic

Ket 6, runs
Ket 7, spins until turn=7

ket O, spins until turn=0

turn=6
ticket = 1

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7

C lock(): gets ticket O, spins until turn=0
A unlock(): turn++
B runs

turn=7
ticket = 1

A lock(): gets ticket 6, runs
B lock(): gets ticket 7, spins until turn=7

C lock(): gets ticket O, spins until turn=0
A unlock(): turn++

B runs
A lock(): gets ticket 1, spins until turn=1

turn=7
ticket = 2

A lock(): gets ticket 6, runs

B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket O, spins until turn=0
A unlock(): turn++

B runs

A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++

C runs

turn=0
ticket = 2

A lock(): gets ticket 6, runs

B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket O, spins until turn=0
A unlock(): turn++

B runs

A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++

C runs

C unlock(): turn++

A runs

turn =1
ticket = 2

A lock(): gets ticket 6, runs

B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket O, spins until turn=0
A unlock(): turn++

B runs

A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++

C runs

C unlock(): turn++

A runs

A unlock(): turn++

turn =2
ticket = 2

A lock(): gets ticket 6, runs

B lock(): gets ticket 7, spins until turn=7
C lock(): gets ticket O, spins until turn=0
A unlock(): turn++

B runs

A lock(): gets ticket 1, spins until turn=1
B unlock(): turn++

C runs

C unlock(): turn++

A runs \
A unlock(): turn++

C lock(): gets ticket 2, runs

turn =2
ticket = 3

Problem 2

Do It.

Ticket Lock (1)

typedef struct _ lock t{
INt ticket:
int turn;

}

void lock init(lock_t *lock) {
lock->ticket = O;
lock->turn = 0O;

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while(lock->turn '= myturn)
- // spin
}

void release (lock_t *lock) {
FAA(&lock->turn);

}

Ticket Lock (2)

typedef struct _ lock t{
INt ticket:
int turn;

}

void lock init(lock_t *lock) {
lock->ticket = O;
lock->turn = 0O;

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while(lock->turn '= myturn)
yield(); // spin
}

void release (lock_t *lock) {
FAA(&lock->turn);

}

Iock unlock Iock
«spin-+ «spin+> | «spin-+

100 120 140 160

Iock LHﬂOCk Iock

0 100 120 140 160

Iock unlock Iock
«spin-+ «spin+> | «spin-+

100 120 140 160

no vyield:

Iock LHﬂOCk Iock

100 120 140 160

Spinlock Performance

Waste...
Without yield: O(threads * context_switch)

With yield: O(threads * time_slice)

Spinlock Performance

Waste...
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

So even with yield, we're slow with high contention.

Problem 3

Do It.

Problem 3

Do It.

) This spins on guard — why”? (what is protected? what is not?)
) This still spins. Why is it better than a simple spin lock?

) In unlock, there is no setting of flag=0 when we unpark. Why?
)

a
o
C
a

What is the race-condition bug in this code?

(
(
(
(

Race Condition

Thread 1 Thread 2

if (lock->flag == 0)

queue_push(lock->q, gettid());

lock->guard = 0O;
while (xchg(&lock->guard, 1) == 1)
if (queue_empty(lock->Qq))
unpark(queue_pop(lock->q));
lock->guard = 0;

park();

(in lock) (in unlock)

Incorrect Code

void lock(lock_t *lock) {

while (xchg(&lock->guard, 1) == 1)
- [/ spin

if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;

} else {
gueue_push(lock->q, gettid());
lock->guard = 0;
park();

Incorrect Code

void lock(lock_t *lock) {
while (xchg(&lock->guard, 1) == 1)
- [/ spin
if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;
} else {
queue_push(lock->q, gettid());
lock->guard = 0;
park();

Racel

Incorrect Code

void lock(lock_t *lock) {

while (xchg(&lock->guard, 1) == 1)
- [/ spin

if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;

} else {
gueue_push(lock->q, gettid());
lock->guard = 0;
park();

Correct Code

void lock(lock_t *lock) {

while (xchg(&lock->guard, 1) == 1)
- [/ spin

if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;

} else {
gueue_push(lock->q, gettid());
setpark();
lock->guard = 0;
park();

Queue Lock
RUNNABLE: A, B,C,D
RUNNING: <empty>
WAITING: <empty>

%I

0 20 40 o0 80 100 120 140 160

Queue Lock

RUNNABLE: B, C, D
RUNNING: A
WAITING: <empty>

lock

4
A

0 20 40 o0 380 100 120 140 10

Queue Lock
RUNNABLE: C, D, A
RUNNING: B
WAITING: <empty>

lock

|

>

0 20 40 o0 380 100 120 140 10

Queue Lock
RUNNABLE: C, D, A
RUNNING:
WAITING: B

try lock
lock (sleep)

¥ b
A

0 20 40 o0 380 100 120 140 10

Queue Lock

RUNNABLE: D, A
RUNNING: C
WAITING: B

try lock
lock (sleep)

¥ b

A C

0 20 40 o0 380 100 120 140 10

Queue Lock
RUNNABLE: A, C
RUNNING: D
WAITING: B

try lock
Iock Qeep

100 120 140 160

Queue Lock
RUNNABLE: A, C

RUNNING:
WAITING: B, D
try lock try lock
Iock sleep sleep

100 120 140 160

Queue Lock

RUNNABLE: C
RUNNING: A
WAITING: B, D
ock ”s|ekéf>k ”s|elcéf>k

100 120 140 160

Queue Lock

RUNNABLE: A
RUNNING: C
WAITING: B, D
ook ”s|e'2|%k ”s|e'2|%k

100 120 140 160

Queue Lock

RUNNABLE: C
RUNNING: A
WAITING: B, D
ook ”s|e'2|%k ”s|elcéf>k

100 120 140 160

Queue Lock
RUNNABLE: B, D, C

RUNNING: A
WAITING:
try lock try lock
Ioek sleep sleep unlock

100 120 140 160

Queue Lock
RUNNABLE: B, D, C

RUNNING: A
WAITING:
try lock try lock
Ioek sleep sleep unlock

b
A

100 120 140 160

Queue Lock
RUNNABLE: D, C, A

RUNNING: B
WAITING:
try lock try lock
Iock Sleep Sleep unlock lock

Voo

-+ B

100 120 140 160

Condition Variables

Concurrency Objectives

Mutual exclusion (e.g., A and B don'’t run at same time)
- solved with /locks

Ordering (e.g., B runs after A)
- solved with condition variables

Ordering Example: Join

pthread_t p1, p2;

orintf("main: begin [balance = %d]\n", balance);
Pthread_create(&p 1, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(p 1, NULL);

Pthread_join(p2, NULL);

orintf("main: done\n [balance: %d]\n [should: %d]\n",

pbalance, max*2);

return O;

Ordering Example: Join

thread t
intf("mal
thread_c
thread_c

01, p2;
N: begin [bala

nce = %d]\n", balance);

reate(&p 1, NULL, mythread, "A");
reate(&p2, NULL, mythread, "B");
join walits for the threads to finish

thread_join(p 1, NULL);
thread_join(p2, NULL);

how to implement join®

U'U'U\E'U'UUU

rintf("main: done\n

balance, max*2);

return O;

‘balance: %d]\n [should: %d]\n",

Condition Variables

CV’s are more like channels than variables.
B waits for a signal on channel before running.
A sends signal when it is time for B to run.

Condition Variables

CV’s are more like channels than variables.
B waits for a signal on channel before running.
A sends signal when it is time for B to run.

A CV also has a queue of waiting threads.

Broken CV'’s

wait(cond_t *cv)
- puts caller to sleep (and on queue)

signal(cond_t *cv)
- wake a single waiting thread (if >= 1 thread is waitinQg)
- If there is no waiting thread, just return w/o doing anything

Broken CV'’s

wait(cond_t "cv) when to call?
- puts caller to sleep (and on queue)

signal(cond_t *cv)
- wake a single waiting thread (if >= 1 thread is waitinQg)
- If there is no waiting thread, just return w/o doing anything

IRUEEY)
wait(&cv);

lock(&mutex);
// critical section
unlock(&mutex);

Way 1

Way 1

what if another thread

if (lread
(Y) sets ready=1 here”

wait(&cv);

lock(&mutex);
// critical section
unlock(&mutex);

Way 2

lock(&mutex);

// critical section

it ('ready)
wait(&cv);

unlock(&mutex):;

Way 2

lock(&mutex);
// critical section
it ('ready)
wait(&cv); nobody can wake us up
unlock(&mutex); because we hold mutex

Broken CV'’s

wait(cond_t *cv)
- puts caller to sleep

signal(cond_t *cv)
- wake a single waiting thread (if >= 1 thread is waitinQg)
- If there is no waiting thread, just return w/o doing anything

Correct CV’s

wait(cond_t *cv,)
- puts caller to sleep
signal(cond_t *cv)

- wake a single waiting thread (it >= 1 thread is waiting)
- If there Is no waiting thread, just return w/o doing anything

Correct CV'’s
requires kernel

wait(cond_t *cv,) support!
- puts caller to sleep
signal(cond_t *cv)

- wake a single waiting thread (it >= 1 thread is waiting)
- If there Is no waiting thread, just return w/o doing anything

Code Examples

NOTE: Handout reference defines CV'’s.

CV’s in xvb code

Proc.c:
- sleep() Is like cond_wait()
- wakeup() is like cond_signal()

-Xxample use case:
- piperead() and pipewrite() in pipe.c

Announcements

Exam this Friday.

- Oct 17, 7-9pm, in CHEM 1351.

- Covers all material until that day.
- Read OSTEP!

Review this Wednesday.
- Oct 15, 7-9pm, room TBD, come with questions!

p3a posted.

Office hours after class in Galapagos lab.

