
Problem 1: Concurrent Hash Table!!
#define HASH_BUCKETS (1024) !
typedef struct __hash_t {
 list_t hlists[HASH_BUCKETS];
} hash_t; !
void Hash_Init(hash_t *H) {
 for (int i = 0; i < HASH_BUCKETS; i++) {
 List_Init(&H->hlists[i]);
 }
} !
void Hash_Insert(hash_t *H, int key) {
 int b = key % HASH_BUCKETS;
 List_Insert(&H->hlists[b], key);
} !
int Hash_Lookup(hash_t *H, int key) {
 int b = key % HASH_BUCKETS;
 return List_Lookup(&H->hlists[b], key);
} !
How do you modify the above code to use locks? API:!!
lock_init(int *mutex);!
lock(int *mutex);!
unlock(int *mutex);!!

Problem 2: Building a Ticket Lock!!
TEMPLATE: FILL THIS IN TO MAKE YOUR OWN LOCK!!
typedef struct __lock_t {
 // whatever data structs you need goes here
} lock_t; !
void init(lock_t *lock) {
 // init code goes here
} !
void acquire(lock_t *lock) {
 // lock acquire code goes here
} !
void release(lock_t *lock) {
 // lock release code goes here
} !

You may use yield() and FetchAndAdd(), defined as this:!!
int FetchAndAdd(int *ptr) {
 int old = *ptr;
 *ptr = old + 1;
 return old;
} !!!

Problem 3: Queue Lock!!
typedef struct __lock_t {
 int flag; // state of lock: 1=held, 0=free
 queue_t *q; // queue of waiters
 int guard; // use to protect flag, queue
}; !
void lock_init(lock_t *lock) {
 lock->flag = lock->guard = 0;
 lock->q = queue_init();
} !
void lock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (lock->flag == 0) { // lock is free: grab it!
 lock->flag = 1;
 lock->guard = 0;
 } else { // lock not free: sleep
 queue_push(lock->q, gettid());
 lock->guard = 0;
 park(); // put self to sleep
 }
} !
void unlock(lock_t *lock) {
 while (xchg(&lock->guard, 1) == 1)
 ; // spin
 if (queue_empty(lock->q))
 lock->flag = 0;
 else
 unpark(queue_pop(lock->q));
 lock->guard = 0;
} !
(a) This spins on guard — why? (what is protected? what is not protected?)!
(b) This still spins. Why is it better than a simple spin lock?!
(c) In unlock, there is no setting of flag=0 when we unpark. Why?!
(d) What is the race-condition bug in this code?!!

Reference: Condition Variables!!
mutex_t lock; // declare a lock!
cond_t cv; // declare a condition variable!!
A condition variable (CV) is a queue of waiting threads.!!
A single lock is associated with each CV (see below for usage).!!
There are two main operations that are important for CVs:!!
wait(cond_t *cv, mutex_t *lock)!
 - assumes the lock is held when wait() is called!
 - puts caller to sleep + releases the lock (atomically)!
 - when awoken, reacquires lock before returning!!
signal(cond_t *cv)!
 - wake a single waiting thread (if >= 1 thread is waiting)!
 - if there is no waiting thread, just return w/o doing anything!!
A CV is usually PAIRED with some kind state variable!
 - e.g., integer (which indicates the state of the system that we're interested in)!!
int state; // related “state” variable (could be an int)

