
[537] Concurrency Bugs
Chapter 32
Tyler Harter

10/22/14

Review Semaphores

CV’s vs. Semaphores
CV rules of thumb:
 - Keep state in addition to CV’s
 - Always do wait/signal with lock held
 - Whenever you acquire a lock, recheck state
!

How do semaphores eliminate these needs?

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

Thread Queue: Signal Queue:

A

wait()

Condition Variable (CV)

Semaphore

Thread Queue:

A

Thread Queue: Signal Queue:

A

Condition Variable (CV)

Semaphore

Thread Queue:

A

Thread Queue: Signal Queue:

A

Condition Variable (CV)

Semaphore

Thread Queue:

A

signal()

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal()

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal()

signal

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal

wait()

B

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

wait()

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever
(if not careful)

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever
(if not careful)

just use counter

Join w/ CVint done = 0;
mutex_t m = MUTEX_INIT;
cond_t c = COND_INIT;
void *child(void *arg) {
 printf(“child\n”);
 Mutex_lock(&m);
 done = 1;
 cond_signal(&c);
 Mutex_unlock(&m);
}
!
int main(int argc, char *argv[]) {
 pthread_t c;
 printf(“parent: begin\n”);
 Pthread_create(c, NULL, child, NULL);
 Mutex_lock(&m);
 while(done == 0)
 Cond_wait(&c, &m);
 Mutex_unlock(&m);
 printf(“parent: end\n”);
}

Join w/ CVint done = 0;
mutex_t m = MUTEX_INIT;
cond_t c = COND_INIT;
void *child(void *arg) {
 printf(“child\n”);
 Mutex_lock(&m);
 done = 1;
 cond_signal(&c);
 Mutex_unlock(&m);
}
!
int main(int argc, char *argv[]) {
 pthread_t c;
 printf(“parent: begin\n”);
 Pthread_create(c, NULL, child, NULL);
 Mutex_lock(&m);
 while(done == 0)
 Cond_wait(&c, &m);
 Mutex_unlock(&m);
 printf(“parent: end\n”);
}

extra state and mutex

locks around state/signal

while loop for checking state

Join w/ CVint done = 0;
mutex_t m = MUTEX_INIT;
cond_t c = COND_INIT;
void *child(void *arg) {
 printf(“child\n”);
 Mutex_lock(&m);
 done = 1;
 cond_signal(&c);
 Mutex_unlock(&m);
}
!
int main(int argc, char *argv[]) {
 pthread_t c;
 printf(“parent: begin\n”);
 Pthread_create(c, NULL, child, NULL);
 Mutex_lock(&m);
 while(done == 0)
 Cond_wait(&c, &m);
 Mutex_unlock(&m);
 printf(“parent: end\n”);
}

Join w/ Semaphoresem_t s;
void *child(void *arg) {
 printf(“child\n”);
 sem_post(&s);
}
!
int main(int argc, char *argv[]) {
 sem_init(&s, 0);
 pthread_t c;
 printf(“parent: begin\n”);
 Pthread_create(c, NULL, child, NULL);
 sem_wait(&s);
 printf(“parent: end\n”);
}

Semaphore Uses
For the following init’s, what might the use be?
!

(a) sem_init(&s, 0);
!

(b) sem_init(&s, 1);
!

(c) sem_init(&s, N);

Producer/Consumer
How many semaphores do we need?

Producer/Consumer
How many semaphores do we need?
!
!
Sem_init(&empty, max); // max are empty
Sem_init(&full, 0); // 0 are full
Sem_init(&mutex, 1); // mutex

Producer/Consumer

void *producer(void *arg) {
 for (int i = 0; i < loops; i++) {
 Sem_wait(&empty);
 Sem_wait(&mutex);
 do_fill(i);
 Sem_post(&mutex);
 Sem_post(&full);
 }
}

void *consumer(void *arg) {
 while (1) {
 Sem_wait(&full);
 Sem_wait(&mutex);
 tmp = do_get();
 Sem_post(&mutex);
 Sem_post(&empty);
 printf("%d\n", tmp);
 }
}

Producer/Consumer

void *producer(void *arg) {
 for (int i = 0; i < loops; i++) {
 Sem_wait(&empty);
 Sem_wait(&mutex);
 do_fill(i);
 Sem_post(&mutex);
 Sem_post(&full);
 }
}

void *consumer(void *arg) {
 while (1) {
 Sem_wait(&full);
 Sem_wait(&mutex);
 tmp = do_get();
 Sem_post(&mutex);
 Sem_post(&empty);
 printf("%d\n", tmp);
 }
}

Mutual Exclusion

Producer/Consumer

void *producer(void *arg) {
 for (int i = 0; i < loops; i++) {
 Sem_wait(&empty);
 Sem_wait(&mutex);
 do_fill(i);
 Sem_post(&mutex);
 Sem_post(&full);
 }
}

void *consumer(void *arg) {
 while (1) {
 Sem_wait(&full);
 Sem_wait(&mutex);
 tmp = do_get();
 Sem_post(&mutex);
 Sem_post(&empty);
 printf("%d\n", tmp);
 }
}

Signaling

Concurrency Bugs

Concurrency in Medicine: Therac-25

“The accidents occurred when the high-power electron beam was
activated instead of the intended low power beam, and without the
beam spreader plate rotated into place. Previous models had
hardware interlocks in place to prevent this, but Therac-25 had
removed them, depending instead on software interlocks for safety.
The software interlock could fail due to a race condition.”

Source: http://en.wikipedia.org/wiki/Therac-25

http://en.wikipedia.org/wiki/Therac-25

Concurrency in Medicine: Therac-25

“The accidents occurred when the high-power electron beam was
activated instead of the intended low power beam, and without the
beam spreader plate rotated into place. Previous models had
hardware interlocks in place to prevent this, but Therac-25 had
removed them, depending instead on software interlocks for safety.
The software interlock could fail due to a race condition.”
!
“…in three cases, the injured patients later died.”

Source: http://en.wikipedia.org/wiki/Therac-25

http://en.wikipedia.org/wiki/Therac-25

Concurrency in Medicine: Therac-25

“The accidents occurred when the high-power electron beam was
activated instead of the intended low power beam, and without the
beam spreader plate rotated into place. Previous models had
hardware interlocks in place to prevent this, but Therac-25 had
removed them, depending instead on software interlocks for safety.
The software interlock could fail due to a race condition.”
!
“…in three cases, the injured patients later died.”
!
Getting concurrency right can sometimes save lives!

Source: http://en.wikipedia.org/wiki/Therac-25

http://en.wikipedia.org/wiki/Therac-25

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Atomicity: MySQL
Thread 1:
!
if (thd->proc_info) {
 …
 fputs(thd->proc_info, …);
 …
}

What’s wrong?

Thread 2:
!
thd->proc_info = NULL;

Atomicity: MySQL
Thread 1:
!
pthread_mutex_lock(&lock);
if (thd->proc_info) {
 …
 fputs(thd->proc_info, …);
 …
}
pthread_mutex_unlock(&lock);

Thread 2:
!
pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Thread 1:
!
void init() {
 …
 mThread
 = PR_CreateThread(mMain, …);
 …
}

Thread 2:
!
void mMain(…) {
 …
 mState = mThread->State;
 …
}

Ordering: Mozilla

Thread 1:
!
void init() {
 …
 mThread
 = PR_CreateThread(mMain, …);
!
 pthread_mutex_lock(&mtLock);
 mtInit = 1;
 pthread_cond_signal(&mtCond);
 pthread_mutex_unlock(&mtLock);
 …
}

Thread 2:
!
void mMain(…) {
 …
 Mutex_lock(&mtLock);
 while(mtInit == 0)
 Cond_wait(&mtCond, &mtLock);
 Mutex_unlock(&mtLock);
!
 mState = mThread->State;
 …
}

Ordering: Mozilla

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Bugs are Common and Various

Lu etal. Study:!
!
For four major projects,
search for concurrency
bugs among >500K bug
reports. Analyze small
sample to identify
common types of
concurrency bugs.

Bu
gs

0

15

30

45

60

MySQL Apache Mozilla OpenOffice

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Deadlock
Cooler name: the deadly embrace (Dijkstra).

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

who goes?

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

C

D

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

C

D

who goes?

Deadlock
Cooler name: the deadly embrace (Dijkstra).

ST
O

P

STOP

STO
P

STOP

A

B

C

D

who goes?
Deadlock!

Boring Code Example

Thread 1 [RUNNING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [RUNNING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [RUNNABLE]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNING]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [RUNNABLE]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNING]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [RUNNING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [SLEEPING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [SLEEPING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNING]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [SLEEPING]:
!

lock(&A);
lock(&B)

Thread 2 [SLEEPING]:
!

lock(&B);
lock(&A)

Boring Code Example

Thread 1 [SLEEPING]:
!

lock(&A);
lock(&B)

Thread 2 [SLEEPING]:
!

lock(&B);
lock(&A)

Deadlock!

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

Boring Code Example

Thread 1 [RUNNING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&A);
lock(&B)

Boring Code Example

Thread 1 [RUNNING]:
!

lock(&A);
lock(&B)

Thread 2 [RUNNABLE]:
!

lock(&A);
lock(&B)

Can’t deadlock.

Non-circular Dependency (fine)

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

What’s Wrong?
set_t *set_union (set_t *s1, set_t *s2) {
 set_t *rv = Malloc(sizeof(*rv));
 Mutex_lock(&s1->lock);
 Mutex_lock(&s2->lock);
!
 for(int i=0; i<s1->len; i++) {
 if(set_contains(s2, s1->items[i])
 set_add(rv, s1->items[i]);
!
 Mutex_unlock(&s2->lock);
 Mutex_unlock(&s1->lock);
}

Encapsulation
Modularity can make it harder to see deadlocks.

Thread 1:
!
rv = set_union(setA, setB);

Thread 2:
!
rv = set_union(setB, setA);

Encapsulation
Modularity can make it harder to see deadlocks.
!

!

!

!

!

Solutions?

Thread 1:
!
rv = set_union(setA, setB);

Thread 2:
!
rv = set_union(setB, setA);

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Mutual Exclusion
Def:
!

Threads claim exclusive control of resources that
they require (e.g., thread grabs a lock).

Wait-Free Algorithms
Strategy: eliminate lock use.
!
Assume we have:
int CompAndSwap(int *addr, int expected, int new)
0: fail, 1: success

void add_v2(int *val, int amt) {
 do {
 int old = *value;
 } while(!CompAndSwap(val, old, old+amt);
}

void add_v1(int *val, int amt) {
 Mutex_lock(&m);
 *val += amt;
 Mutex_unlock(&m);
}

Wait-Free Algorithms
Strategy: eliminate lock use.
!
Assume we have:
int CompAndSwap(int *addr, int expected, int new)

void insert(int val) {
 node_t *n = Malloc(sizeof(*n));
 n->val = val;
 lock(&m);
 n->next = head;
 head = n;
 unlock(&m);
}

eliminate
the lock!

Wait-Free Algorithms
Strategy: eliminate lock use.
!
Assume we have:
int CompAndSwap(int *addr, int expected, int new)

void insert(int val) {
 node_t *n = Malloc(sizeof(*n));
 n->val = val;
 do {
 n->next = head;
 } while (!CompAndSwap(&head, n->next, n));
}

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Hold-and-Wait
Def:
!

Threads hold resources allocated to them (e.g., locks
they have already acquired) while waiting for
additional resources (e.g., locks they wish to acquire).

Eliminate Hold-and-Wait
Strategy: acquire all locks atomically once!
(cannot acquire again until all have been released).
!
For this, use a meta lock, like this:
!
lock(&meta);
lock(&L1);
lock(&L2);
…
unlock(&meta);

Eliminate Hold-and-Wait
Strategy: acquire all locks atomically once!
(cannot acquire again until all have been released).
!
For this, use a meta lock, like this:
!
lock(&meta);
lock(&L1);
lock(&L2);
…
unlock(&meta);

Discuss:!
 - how should unlock work?
 - disadvantages?

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

No preemption
Def:
!

Resources (e.g., locks) cannot be forcibly removed
from threads that are holding them.

Support Preemption
Strategy: if we can’t get what we want, release what we have.
!
top:
 lock(A);
 if (trylock(B) == -1) {
 unlock(A);
 goto top;
 }
 …

Support Preemption
Strategy: if we can’t get what we want, release what we have.
!
top:
 lock(A);
 if (trylock(B) == -1) {
 unlock(A);
 goto top;
 }
 …

Discuss:!
 - disadvantages?

Support Preemption
Strategy: if we can’t get what we want, release what we have.
!
top:
 lock(A);
 if (trylock(B) == -1) {
 unlock(A);
 goto top;
 }
 …

Discuss:!
 - disadvantages? (livelock)

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Deadlock Theory
Deadlocks can only happen with these four conditions:
 - mutual exclusion
 - hold-and-wait
 - no preemption
 - circular wait
!
Eliminate deadlock by eliminating one condition.

Circular Wait
Def:
!

There exists a circular chain of threads such that each
thread holds a resource (e.g., lock) being requested
by next thread in the chain.

Eliminating Circular Wait
Strategy:
 - decide which locks should be acquired before others
 - if A before B, never acquire A if B is already held!
 - document this, and write code accordingly

Lock Ordering in Linux
In linux-3.2.51/include/linux/fs.h

/*
 * inode->i_mutex nesting subclasses for the lock
 * validator:
 *
 * 0: the object of the current VFS operation
 * 1: parent
 * 2: child/target
 * 3: quota file
 *
 * The locking order between these classes is
 * parent -> child -> normal -> xattr -> quota
 */

Lock Ordering in Linux
In linux-3.2.51/include/linux/fs.h

/*
 * inode->i_mutex nesting subclasses for the lock
 * validator:
 *
 * 0: the object of the current VFS operation
 * 1: parent
 * 2: child/target
 * 3: quota file
 *
 * The locking order between these classes is
 * parent -> child -> normal -> xattr -> quota
 */

Linux lockdep Module
Idea:
 - track order in which locks are acquired
 - give warning if circular
!

Extremely useful for debugging!

Example Output
===
[INFO: possible circular locking dependency detected]
3.1.0rc4test00131g9e79e3e #2

insmod/1357 is trying to acquire lock:
(lockC){+.+...}, at: [<ffffffffa000d438>] pick_test+0x2a2/0x892
[lockdep_test]
!
but task is already holding lock:
(lockB){+.+...}, at: [<ffffffffa000d42c>] pick_test+0x296/0x892
[lockdep_test]

Source: http://www.linuxplumbersconf.org/2011/ocw/sessions/153

http://www.linuxplumbersconf.org/2011/ocw/sessions/153

Summary
Concurrency is hard, encapsulation makes it harder!
!
Have a strategy to avoid deadlock and stick to it.
!
Choosing a lock order is probably most practical.
!
When possible, avoid concurrent solutions altogether!

Announcements
Office hours: 1pm in office.
!

p3a due Friday.
!

Start p3b!
!

Thursday discussion: hand back and discuss test.

