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I/O Devices



Motivation
What good is a computer without any I/O devices? 
 - keyboard, display, disks 
!

We want: 
 - H/W that will let us plug in different devices 
 - OS that can interact with different combinations 



Motivation
What good is a computer without any I/O devices? 
 - keyboard, display, disks 
!

We want: 
 - H/W that will let us plug in different devices 
 - OS that can interact with different combinations 
!

Largely a communication problem…
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(e.g., PCI)

Peripheral I/O Bus 
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?



Canonical Device…  Is a rectangle!
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Canonical Device

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals:
Microcontroller (CPU+RAM) 
Extra RAM 
Other special-purpose chips



Example Protocol

while (STATUS == BUSY) 
 ; // spin 
Write data to DATA register 
Write command to COMMAND register 
while (STATUS == BUSY) 
 ; // spin
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while (STATUS == BUSY)             // 4 
 ;

CPU:

Disk:
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Disk: C

A wants to do I/O
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 ; 
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 ;
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A BCPU:

Disk: C A

how to avoid spinning? 
interrupts!

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;



while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

how to avoid spinning? 
interrupts!

B B AA

1
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Interrupts vs. Polling
Discuss: are interrupts ever worse? 
!

Interrupts can sometimes lead to livelock 
 - e.g., flood of network packets 
!

Techniques: 
 - hybrid approach 
 - interrupt coalescing



Protocol Variants
Status checks: polling vs. interrupts 
!

Data: PIO vs. DMA 
!

Control: special instructions vs. memory-mapped I/O



while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

what else can we optimize?

B B AA

1



while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

what else can we optimize? 
data transfer!

B B AA

1



Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O): 
 - CPU directly tells device what data is 
!

DMA (Direct Memory Access): 
 - CPU leaves data in memory 
 - Device reads it directly



while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;
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while (STATUS == BUSY)             // 1 
 wait for interrupt; 
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B B A

1 3,4

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;



Protocol Variants
Status checks: polling vs. interrupts 
!

Data: PIO vs. DMA 
!

Control: special instructions vs. memory-mapped I/O



ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;



ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1 
 wait for interrupt; 
Write data to DATA register        // 2 
Write command to COMMAND register  // 3 
while (STATUS == BUSY)             // 4 
 wait for interrupt;

how does OS read 
 and write registers?



Special Instructions vs. Mem-Mapped I/O
Special instructions 
 - each device has a port 
 - in/out instructions (x86) communicate with device 
!

Memory-Mapped I/O 
 - H/W maps registers into address space 
 - loads/stores sent to device 
!

Tradeoffs?



Special Instructions vs. Mem-Mapped I/O
Special instructions 
 - each device has a port 
 - in/out instructions (x86) communicate with device 
!

Memory-Mapped I/O 
 - H/W maps registers into address space 
 - loads/stores sent to device 
!

Doesn’t matter much (both are used).



Protocol Variants
Status checks: polling vs. interrupts 
!

Data: PIO vs. DMA 
!

Control: special instructions vs. memory-mapped I/O



Variety is a Challenge
Problem: 
 - many, many devices 
 - each has its own protocol 
!

How can we avoid writing a slightly different OS for 
each H/W combination?



Solution
Encapsulation! 
!

Write driver for each device. 
!

Drivers are 70% of Linux source code.



Solution
Encapsulation! 
!

Write driver for each device. 
!

Drivers are 70% of Linux source code. 
!

Encapsulation also enables us to mix-and-match 
devices, schedulers, and file systems.
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Storage Stack

application
file system
scheduler

driver
hard drive

build common interface 
on top of all HDDs

what about special 
capabilities?



Hard Disks



Basic Interface

Disk has a sector-addressable address space 
(so a disk is like an array of sectors). 
!

Sectors are typically 512 bytes or 4096 bytes. 
!

Main operations: reads + writes to sectors.



Platter

Disk Internals



Platter is covered with a magnetic film.



Spindle



Surface

Surface



Many platters may be bound to the spindle.





Each surface is divided into rings called tracks. 
A stack of tracks (across platters) is called a cylinder.



The tracks are divided into numbered sectors.
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Heads on a moving arm can read from each surface.
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spin

Spindle/platters rapidly spin.



Don’t try this at home!

http://youtu.be/9eMWG3fwiEU?t=30s 

http://youtu.be/9eMWG3fwiEU?t=30s


Let’s Read 12!
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Wait for rotation.
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Transfer data.
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Transfer data.
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Yay!
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Seek, Rotate, Transfer
Must accelerate, coast, decelerate, settle 
!

Seeks often take several milliseconds! 
!

Settling alone can take 0.5 - 2 ms. 
!

Entire seek often takes 4 - 10 ms.



Seek, Rotate, Transfer
Depends on rotations per minute (RPM). 
 - 7200 RPM is common, 1500 RPM is high end. 
!

1 / 7200 RPM = 
1 minute / 7200 rotations =  
1 second / 120 rotations = 
12 ms / rotation



Seek, Rotate, Transfer
Depends on rotations per minute (RPM). 
 - 7200 RPM is common, 1500 RPM is high end. 
!

1 / 7200 RPM = 
1 minute / 7200 rotations =  
1 second / 120 rotations = 
12 ms / rotation

so it may take 6 ms 
on avg to rotate to 
target (0.5 * 12 ms)



Seek, Rotate, Transfer
Pretty fast — depends on RPM and sector density. 
!

100+ MB/s is typical. 
!

1s / 100 MB = 10 ms / MB = 4.9 us / sector 
(assuming 512-byte sector)



Workload
So… 
 - seeks are slow 
 - rotations are slow 
 - transfers are fast 
!

What kind of workload is fastest for disks? 



Workload
So… 
 - seeks are slow 
 - rotations are slow 
 - transfers are fast 
!

What kind of workload is fastest for disks? 
Sequential: access sectors in order (transfer dominated) 
Random: access sectors arbitrarily (seek+rotation dominated)



Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB



Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Sequential workload: what is throughput for each?



Disk Spec
Cheetah Barracuda
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Platters 4 4
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Barracuda: 105 MB/s.
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Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
(what else do you need to know?)



Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
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Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
Assume 16-KB reads.



Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each? 
Assume 16-KB reads.
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RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation = 
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

 = 2 ms
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125 MB
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer = 
1 sec

125 MB
16 KB

1,000,000 us
1 sec

= 125 us
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Cheetah time = 4ms + 2ms + 125us = 6.1ms
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Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput = 
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput = 
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec

= 2.5 MB/s



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation = 
1
2

1 min
7200



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation = 
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation = 
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

 = 4.1 ms



Cheetah Barracuda
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Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer = 
1 sec

105 MB
16 KB



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer = 
1 sec

105 MB
16 KB

1,000,000 us
1 sec



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer = 
1 sec

105 MB
16 KB

1,000,000 us
1 sec

= 149 us



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput = 
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput = 
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec



Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput = 
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

= 1.2 MB/s



Cheetah Barracuda
Sequential 125 MB/s 105 MB/s
Random 2.5 MB/s 1.2 MB/s

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
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When reading 16 after 15, the head won’t settle 
quick enough, so we need to do a rotation.
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Other Improvements
Track Skew 
!

Zones 
!

Cache



Drive Cache
Drives may cache both reads and writes. 
!

OS does this to. 
!

What advantage does drive have for reads? 
!

What advantage does drive have for writes?



Schedulers



Schedulers
Given a stream of requests, in what order should 
they be served?



FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average. 
Assume transfer = 100 MB/s. 
!

How long (roughly) does the below workload take? 
The integers are sector numbers. 
!
300001, 700001, 300002, 700002, 300003, 700003
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Assume seek+rotate = 10 ms on average. 
Assume transfer = 100 MB/s. 
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How long (roughly) does the below workload take? 
The integers are sector numbers. 
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300001, 700001, 300002, 700002, 300003, 700003 (~60ms) 



FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average. 
Assume transfer = 100 MB/s. 
!

How long (roughly) do the below workloads take? 
The integers are sector numbers. 
!
300001, 700001, 300002, 700002, 300003, 700003 (~60ms) 
300001, 300002, 300003, 700001, 700002, 700003



FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average. 
Assume transfer = 100 MB/s. 
!

How long (roughly) do the below workloads take? 
The integers are sector numbers. 
!
300001, 700001, 300002, 700002, 300003, 700003 (~60ms) 
300001, 300002, 300003, 700001, 700002, 700003 (~20ms)



Schedulers
OS

Disk



Schedulers
OS

Disk

Scheduler

Scheduler

Where should the 
scheduler go?



SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take 
the least time for seeking and rotating. 
!

How to implement in disk? 
How to implement in OS?



SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take 
the least time for seeking and rotating. 
!

How to implement in disk? 
How to implement in OS? 
!

Disadvantages?



SCAN
Sweep back and forth, from one end of disk to the 
other, serving requests as you go. 
!

Pros/Cons?



SCAN
Sweep back and forth, from one end of disk to the 
other, serving requests as you go. 
!

Pros/Cons? 
!

Better: C-SCAN (circular scan) 
 - only sweep in one direction



What happens? 

void reader(int fd) { 
 char buf[1024]; 
 int rv; 
 while((rv = read(buf)) != 0) { 
  assert(rv); 
  // takes short time, e.g., 1ms 
  process(buf, rv); 
 } 
}

Assume 2 processes, and C-SCAN.



Work Conservation
Work conserving schedulers always try to do I/O if 
there’s I/O to be done. 
!

Sometimes, it’s better to wait instead if you 
anticipate another request will appear nearby. 
!

Such non-work-conserving schedulers are called 
anticipatory schedulers.



CFQ (Linux Default)
Completely Fair Queueing. 
!
Queue for each process. 
!
Do weighted round-robin between queues, with slice time 
proportional to priority. 
!
Optimize order within queue. 
!
Yield slice only if idle for a given time (anticipation).



Summary
Overlap I/O and CPU whenever possible! 
 - use interrupts, DMA 
!

Never do random I/O unless you must! 
 - e.g., Quicksort is a terrible algorithm on disk



Announcements
Office hours: after class, in lab. 
!

p3b due Friday.


