
[537] I/O Devices
Chapter 35 - 37

Tyler Harter
10/27/14

I/O Devices

Motivation
What good is a computer without any I/O devices?
 - keyboard, display, disks
!

We want:
 - H/W that will let us plug in different devices
 - OS that can interact with different combinations

Motivation
What good is a computer without any I/O devices?
 - keyboard, display, disks
!

We want:
 - H/W that will let us plug in different devices
 - OS that can interact with different combinations
!

Largely a communication problem…

CPU RAM

Memory Bus

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g., PCI)

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?

Canonical Device… Is a rectangle!

Canonical Device

Status COMMAND DATADevice Registers:

Canonical Device

Status COMMAND DATA

OS reads/writes to these

Device Registers:

Canonical Device

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals: ???

Canonical Device

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Example Protocol

while (STATUS == BUSY)
 ; // spin
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)
 ; // spin

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

CPU:

Disk:

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

ACPU:

Disk: C

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

ACPU:

Disk: C

A wants to do I/O

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

ACPU:

Disk: C

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2

ACPU:

Disk: AC

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2

ACPU:

Disk: AC

3

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2 4
3

ACPU:

Disk: C A

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2 4
3

ACPU:

Disk: C A

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2 4
3

A BCPU:

Disk: C A

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2 4
3

A BCPU:

Disk: C A

how to avoid spinning?

1

while (STATUS == BUSY) // 1
 ;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 ;

2 4
3

A BCPU:

Disk: C A

how to avoid spinning?
interrupts!

1 2 4
3

A BCPU:

Disk: C A

how to avoid spinning?
interrupts!

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

how to avoid spinning?
interrupts!

B B AA

1

Interrupts vs. Polling
Discuss: are interrupts ever worse?

Interrupts vs. Polling
Discuss: are interrupts ever worse?
!

Interrupts can sometimes lead to livelock
 - e.g., flood of network packets

Interrupts vs. Polling
Discuss: are interrupts ever worse?
!

Interrupts can sometimes lead to livelock
 - e.g., flood of network packets
!

Techniques:
 - hybrid approach
 - interrupt coalescing

Protocol Variants
Status checks: polling vs. interrupts
!

Data: PIO vs. DMA
!

Control: special instructions vs. memory-mapped I/O

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

what else can we optimize?

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

what else can we optimize?
data transfer!

B B AA

1

Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O):
 - CPU directly tells device what data is
!

DMA (Direct Memory Access):
 - CPU leaves data in memory
 - Device reads it directly

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

2
3,4

A BCPU:

Disk: C A

B B AA

1

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

Protocol Variants
Status checks: polling vs. interrupts
!

Data: PIO vs. DMA
!

Control: special instructions vs. memory-mapped I/O

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1
 wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
 wait for interrupt;

how does OS read
 and write registers?

Special Instructions vs. Mem-Mapped I/O
Special instructions
 - each device has a port
 - in/out instructions (x86) communicate with device
!

Memory-Mapped I/O
 - H/W maps registers into address space
 - loads/stores sent to device
!

Tradeoffs?

Special Instructions vs. Mem-Mapped I/O
Special instructions
 - each device has a port
 - in/out instructions (x86) communicate with device
!

Memory-Mapped I/O
 - H/W maps registers into address space
 - loads/stores sent to device
!

Doesn’t matter much (both are used).

Protocol Variants
Status checks: polling vs. interrupts
!

Data: PIO vs. DMA
!

Control: special instructions vs. memory-mapped I/O

Variety is a Challenge
Problem:
 - many, many devices
 - each has its own protocol
!

How can we avoid writing a slightly different OS for
each H/W combination?

Solution
Encapsulation!
!

Write driver for each device.
!

Drivers are 70% of Linux source code.

Solution
Encapsulation!
!

Write driver for each device.
!

Drivers are 70% of Linux source code.
!

Encapsulation also enables us to mix-and-match
devices, schedulers, and file systems.

Storage Stack

application
file system
scheduler

driver
hard drive

Storage Stack

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

Storage Stack

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

what about special
capabilities?

Hard Disks

Basic Interface

Disk has a sector-addressable address space
(so a disk is like an array of sectors).
!

Sectors are typically 512 bytes or 4096 bytes.
!

Main operations: reads + writes to sectors.

Platter

Disk Internals

Platter is covered with a magnetic film.

Spindle

Surface

Surface

Many platters may be bound to the spindle.

Each surface is divided into rings called tracks.
A stack of tracks (across platters) is called a cylinder.

The tracks are divided into numbered sectors.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Heads on a moving arm can read from each surface.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

spin

Spindle/platters rapidly spin.

Don’t try this at home!

http://youtu.be/9eMWG3fwiEU?t=30s

http://youtu.be/9eMWG3fwiEU?t=30s

Let’s Read 12!

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Seek to right track.

1
2

3

0
6
5 4

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20

Seek to right track.

1
2

3

0
6
5 4

7
8 9

10

11

15

14

13
12

16
17

18

19

23

22

21
20

Seek to right track.

1
2

3

0
6

5 4

7

8 9
10

11

15

14
13 12

16 17

18

19

23

22

21 20

Wait for rotation.

1 2
3

0
6 5 4

7
8 9

10
11

15
14

13 12

16

17

18
19

23
22

21

20

Wait for rotation.

1 2
30

6 5
47

8
9 10

11

15
14 13

12

16

17 18

19

23

22 21

20

Wait for rotation.

1
2 3

0 6
5
4

78

9
10 11

15 14
13

12

16

17

18 19

23 22

21

20

Wait for rotation.

1
2

3

0
6
54

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20

Wait for rotation.

1
2

3
0

6
54

7
89

10
11

15
14

1312

1617

18
19

23
22

2120

Wait for rotation.

12
3 0

65
4 7

8
910

11

15
1413

12

16

1718

19

23

2221

20

Transfer data.

123

0
65

4

7 8
9

10

11

15

1413
12

16
17

18

19

23

22

21
20

Transfer data.

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

1819

2322

21

20

Transfer data.

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

18
19

23
22

21

20

Yay!

1
23

06
5

4

7
8

9
10

11

15
14

13

12

16

17

18
19

23

22

21

20

Seek, Rotate, Transfer
Must accelerate, coast, decelerate, settle
!

Seeks often take several milliseconds!
!

Settling alone can take 0.5 - 2 ms.
!

Entire seek often takes 4 - 10 ms.

Seek, Rotate, Transfer
Depends on rotations per minute (RPM).
 - 7200 RPM is common, 1500 RPM is high end.
!

1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =
12 ms / rotation

Seek, Rotate, Transfer
Depends on rotations per minute (RPM).
 - 7200 RPM is common, 1500 RPM is high end.
!

1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =
12 ms / rotation

so it may take 6 ms
on avg to rotate to
target (0.5 * 12 ms)

Seek, Rotate, Transfer
Pretty fast — depends on RPM and sector density.
!

100+ MB/s is typical.
!

1s / 100 MB = 10 ms / MB = 4.9 us / sector
(assuming 512-byte sector)

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast
!

What kind of workload is fastest for disks?

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast
!

What kind of workload is fastest for disks?
Sequential: access sectors in order (transfer dominated)
Random: access sectors arbitrarily (seek+rotation dominated)

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Sequential workload: what is throughput for each?

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Cheeta: 125 MB/s.
Barracuda: 105 MB/s.

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
(what else do you need to know?)

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
Assume 16-KB reads.

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4
Cache 16 MB 32 MB

Random workload: what is throughput for each?
Assume 16-KB reads.

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation =
1
2

1 min
15000

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation =
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

avg rotation =
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

 = 2 ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer =
1 sec

125 MB
16 KB

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer =
1 sec

125 MB
16 KB

1,000,000 us
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

transfer =
1 sec

125 MB
16 KB

1,000,000 us
1 sec

= 125 us

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB
6.1ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB
6.1ms

1 MB
1024 KB

100 ms
1 sec

= 2.5 MB/s

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation =
1
2

1 min
7200

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation =
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

avg rotation =
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

 = 4.1 ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer =
1 sec

105 MB
16 KB

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer =
1 sec

105 MB
16 KB

1,000,000 us
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

transfer =
1 sec

105 MB
16 KB

1,000,000 us
1 sec

= 149 us

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput =
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput =
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average 16-KB read take w/ Barracuda?

throughput =
16 KB
13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

= 1.2 MB/s

Cheetah Barracuda
Sequential 125 MB/s 105 MB/s
Random 2.5 MB/s 1.2 MB/s

Cheetah Barracuda
RPM 15,000 7,200

Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Other Improvements
Track Skew
!

Zones
!

Cache

Other Improvements
Track Skew
!

Zones
!

Cache

8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

When reading 16 after 15, the head won’t settle
quick enough, so we need to do a rotation.

8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18

8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18

enough time to settle now

Other Improvements
Track Skew
!

Zones
!

Cache

Other Improvements
Track Skew
!

Zones
!

Cache

Drive Cache
Drives may cache both reads and writes.
!

OS does this to.
!

What advantage does drive have for reads?
!

What advantage does drive have for writes?

Schedulers

Schedulers
Given a stream of requests, in what order should
they be served?

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average.
Assume transfer = 100 MB/s.
!

How long (roughly) does the below workload take?
The integers are sector numbers.
!
300001, 700001, 300002, 700002, 300003, 700003

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average.
Assume transfer = 100 MB/s.
!

How long (roughly) does the below workload take?
The integers are sector numbers.
!
300001, 700001, 300002, 700002, 300003, 700003 (~60ms)

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average.
Assume transfer = 100 MB/s.
!

How long (roughly) do the below workloads take?
The integers are sector numbers.
!
300001, 700001, 300002, 700002, 300003, 700003 (~60ms)
300001, 300002, 300003, 700001, 700002, 700003

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms on average.
Assume transfer = 100 MB/s.
!

How long (roughly) do the below workloads take?
The integers are sector numbers.
!
300001, 700001, 300002, 700002, 300003, 700003 (~60ms)
300001, 300002, 300003, 700001, 700002, 700003 (~20ms)

Schedulers
OS

Disk

Schedulers
OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?

SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take
the least time for seeking and rotating.
!

How to implement in disk?
How to implement in OS?

SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take
the least time for seeking and rotating.
!

How to implement in disk?
How to implement in OS?
!

Disadvantages?

SCAN
Sweep back and forth, from one end of disk to the
other, serving requests as you go.
!

Pros/Cons?

SCAN
Sweep back and forth, from one end of disk to the
other, serving requests as you go.
!

Pros/Cons?
!

Better: C-SCAN (circular scan)
 - only sweep in one direction

What happens?

void reader(int fd) {
 char buf[1024];
 int rv;
 while((rv = read(buf)) != 0) {
 assert(rv);
 // takes short time, e.g., 1ms
 process(buf, rv);
 }
}

Assume 2 processes, and C-SCAN.

Work Conservation
Work conserving schedulers always try to do I/O if
there’s I/O to be done.
!

Sometimes, it’s better to wait instead if you
anticipate another request will appear nearby.
!

Such non-work-conserving schedulers are called
anticipatory schedulers.

CFQ (Linux Default)
Completely Fair Queueing.
!
Queue for each process.
!
Do weighted round-robin between queues, with slice time
proportional to priority.
!
Optimize order within queue.
!
Yield slice only if idle for a given time (anticipation).

Summary
Overlap I/O and CPU whenever possible!
 - use interrupts, DMA
!

Never do random I/O unless you must!
 - e.g., Quicksort is a terrible algorithm on disk

Announcements
Office hours: after class, in lab.
!

p3b due Friday.

