
[537] Processes
Tyler Harter

9/8/14

1

0

2

3

4

5

6

7

8

9

10

A B C D E F G H I J K L

Review: System Calls

RAM

Process P

RAM

Process P

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

RAM

Process P

P wants to call read()

RAM

Process P

movl $6, %eax; int $64

RAM

Process P

syscall-table index

movl $6, %eax; int $64

static int (*syscalls[])(void) (syscall.c)

RAM

Process P

trap-table indexsyscall-table index

movl $6, %eax; int $64

struct gatedesc idt[256] (trap.c)

RAM

Process P

movl $6, %eax; int $64

trap-table indexsyscall-table index

RAM

Process P

movl $6, %eax; int $64

Kernel mode: we can do anything!

trap-table indexsyscall-table index

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

trap-table indexsyscall-table index

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

trap-table indexsyscall-table index

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

sy
s_

re
ad

trap-table indexsyscall-table index

RAM

Process P

movl $6, %eax; int $64

sy
sc

al
l

sy
s_

re
ad

buf

trap-table indexsyscall-table index

Processes

What’s a Process?
Java analogy: 
 class => “program”  
 object => “process”

Programs are just code. 
Processes are running programs.

A process is an instance of a program. 
There may be 0 or more processes per program.

Process Creation

!code
static data
Program

CPU Memory

Process Creation

!code
static data
Program

CPU Memory

code
static data

heap
!

stack
Process

What’s in a Process?
Processes share code, but each has its own “context”

CPU 
 Instruction Pointer (aka Program Counter)  
 Stack Pointer

Memory 
 set of memory addresses (“address space”)  
 cat /proc/<PID>/maps

Disk 
 set of file despritors  
 cat /proc/9506/fdinfo/*

Do we enough CPUs?
Linux commands:

ps ax | wc!

top!

cat /proc/cpuinfo | grep 'model name'

How do we share?

CPU?

Memory?

Disk?

How do we share?

CPU? (a: time sharing)

Memory? (a: space sharing)

Disk? (a: space sharing)

How do we share?

CPU? (a: time sharing) TODAY

Memory? (a: space sharing)

Disk? (a: space sharing)

How do we share?

CPU? (a: time sharing) TODAY

Memory? (a: space sharing)

Disk? (a: space sharing)

Goal: processes should NOT even know they are
sharing (each process will get its own virtual CPU)

What to Do with Processes
That Are Not Running?

A: store context in OS struct

Look in kernel/proc.h 
 context (CPU registers)  
 ofile (file descriptors)  
 state (sleeping, running, etc)

What to Do with Processes
That Are Not Running?

A: store context in OS struct

Look in kernel/proc.h 
 context (CPU registers)  
 ofile (file descriptors)  
 state (sleeping, running, etc)

State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

View process state with “ps xa”

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

How to transition? (“mechanism”)
When to transition? (“policy”)

Administrative Stuff
• P1 due on 9/16 (eight days left!)

• Office hours: today after class (in lab), Wed 2-3pm

• Exam prep: understand book and exams

• Reading: chapters 1-2 (last time) and 3-6 (today)

• Learning names

• Wait list: good news!

CPU Time Sharing

Goal 1: efficiency 
 OS should have minimal overheard

Goal 2: control 
 Processes shouldn’t do anything bad  
 OS should decide when processes run

Solution: limited direct execution

Limited Direct Execution

What to limit?
General memory access

Disk I/O

Special x86 instructions like lidt!

How? Get HW help, put processes in “user mode”

What to limit?
General memory access

Disk I/O

Special x86 instructions like lidt!

How? Get HW help, put processes in “user mode”

RAM

Process P

trap-table index syscall-table index

lidt example

RAM

Process P

trap-table index syscall-table index

P tries to call lidt!

lidt example

RAM
trap-table index syscall-table index

CPU warns OS, OS kills P

goodbye, P

lidt example

Context Switch
Problem: when to switch process contexts?

Direct execution => OS can’t run while process runs

How can the OS do anything while it’s not running?  

Context Switch
Problem: when to switch process contexts?

Direct execution => OS can’t run while process runs

How can the OS do anything while it’s not running?  
A: it can’t

Context Switch
Problem: when to switch process contexts?

Direct execution => OS can’t run while process runs

How can the OS do anything while it’s not running?  
A: it can’t

Solution: switch on interrupts. But which interrupt?

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P1

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P1

yield() call

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

yield() call

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

yield() return

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P2

yield() return

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P2

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P2

yield() call

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

yield() call

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

OS

yield() return

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P1

yield() return

Cooperative Approach
Switch contexts for syscall interrupt.

Provide special yield() system call.

P1

Non-Cooperative Approach
Switch contexts on timer interrupt.

Set up before running any processes.

HW does not let processes prevent this.

Is it better to be cooperative or non-cooperative?

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 

Process A 
… 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 
 
 
restore regs(B) from k-stack(B)  
move to user mode  
jump to B’s IP

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program
 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 
 
 
restore regs(B) from k-stack(B)  
move to user mode  
jump to B’s IP

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Process B 
…

Operating System Hardware Program
 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

Summary
• Smooth context switching makes each process

think it has its own CPU (virtualization!)

• Direct execution makes processes fast

• Hardware provides a lot of OS support 
 - limited direct execution  
 - timer interrupts 
 - automatic register saving

Things to Look Forward to
• CPU-sharing policy (Wed lecture)

• Process APIs (Thu discussion)  
Also: syscall timing and more C review

• Memory virtualization (next Mon lecture)

