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Review: System Calls
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P can only see its own memory because of user mode 
(other areas, including kernel, are hidden)
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P wants to call read()
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movl $6, %eax;   int $64
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syscall-table index

movl $6, %eax;   int $64

static int (*syscalls[])(void)    (syscall.c)
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trap-table indexsyscall-table index

movl $6, %eax;   int $64

struct gatedesc idt[256]     (trap.c)
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Process P

movl $6, %eax;   int $64

Kernel mode: we can do anything!

trap-table indexsyscall-table index
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Processes



What’s a Process?
Java analogy: 
 class => “program”  
 object => “process” 

Programs are just code. 
Processes are running programs. 

A process is an instance of a program. 
There may be 0 or more processes per program.



Process Creation

!code 
static data 
Program

CPU Memory



Process Creation

!code 
static data 
Program

CPU Memory

code 
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Process



What’s in a Process?
Processes share code, but each has its own “context” 

CPU 
 Instruction Pointer (aka Program Counter)  
 Stack Pointer 

Memory 
 set of memory addresses (“address space”)  
 cat /proc/<PID>/maps 

Disk 
 set of file despritors  
 cat /proc/9506/fdinfo/*



Do we enough CPUs?
Linux commands: 

ps ax | wc!

top!

cat /proc/cpuinfo | grep 'model name'



How do we share?

CPU? 

Memory? 

Disk?



How do we share?

CPU? (a: time sharing) 

Memory? (a: space sharing) 

Disk? (a: space sharing)



How do we share?

CPU? (a: time sharing)        TODAY 

Memory? (a: space sharing) 

Disk? (a: space sharing)



How do we share?

CPU? (a: time sharing)        TODAY 

Memory? (a: space sharing) 

Disk? (a: space sharing)

Goal: processes should NOT even know they are 
sharing (each process will get its own virtual CPU)



What to Do with Processes 
That Are Not Running?

A: store context in OS struct 

Look in kernel/proc.h 
 context (CPU registers)  
 ofile (file descriptors)  
 state (sleeping, running, etc)
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State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done



State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

View process state with “ps xa”



Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

How to transition? (“mechanism”) 
When to transition? (“policy”)



Administrative Stuff
• P1 due on 9/16 (eight days left!) 

• Office hours: today after class (in lab), Wed 2-3pm 

• Exam prep: understand book and exams 

• Reading: chapters 1-2 (last time) and 3-6 (today) 

• Learning names 

• Wait list: good news!



CPU Time Sharing

Goal 1: efficiency 
 OS should have minimal overheard 

Goal 2: control 
 Processes shouldn’t do anything bad  
 OS should decide when processes run 

Solution: limited direct execution



Limited Direct Execution



What to limit?
General memory access 

Disk I/O 

Special x86 instructions like lidt!

How?  Get HW help, put processes in “user mode”



What to limit?
General memory access 

Disk I/O 

Special x86 instructions like lidt!

How?  Get HW help, put processes in “user mode”
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trap-table index syscall-table index

lidt example



RAM

Process P

trap-table index syscall-table index

P tries to call lidt!

lidt example



RAM
trap-table index syscall-table index

CPU warns OS, OS kills P

goodbye, P

lidt example



Context Switch
Problem: when to switch process contexts? 

Direct execution => OS can’t run while process runs 

How can the OS do anything while it’s not running?  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Context Switch
Problem: when to switch process contexts? 

Direct execution => OS can’t run while process runs 

How can the OS do anything while it’s not running?  
A: it can’t 

Solution: switch on interrupts.  But which interrupt?



Cooperative Approach
Switch contexts for syscall interrupt. 

Provide special yield() system call.
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Cooperative Approach
Switch contexts for syscall interrupt. 

Provide special yield() system call.

P1



Non-Cooperative Approach
Switch contexts on timer interrupt. 

Set up before running any processes. 

HW does not let processes prevent this. 

Is it better to be cooperative or non-cooperative?
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timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program



 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)
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timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 
 
 
restore regs(B) from k-stack(B)  
move to user mode  
jump to B’s IP
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… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Process B 
…

Operating System Hardware Program
 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)



Summary
• Smooth context switching makes each process 

think it has its own CPU (virtualization!) 

• Direct execution makes processes fast 

• Hardware provides a lot of OS support 
 - limited direct execution  
 - timer interrupts 
 - automatic register saving



Things to Look Forward to
• CPU-sharing policy (Wed lecture) 

• Process APIs (Thu discussion)  
Also: syscall timing and more C review 

• Memory virtualization (next Mon lecture)


